Are Cook and Karp ever the same?

We consider the question whether there exists a set A such that every set polynomial-time Turing equivalent to A is also many-one equivalent to A. We show that if E=NE then no sparse set has this property. We give the first relativized world where there exists a set with this property, and in this w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Beigel, R., Fortnow, L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the question whether there exists a set A such that every set polynomial-time Turing equivalent to A is also many-one equivalent to A. We show that if E=NE then no sparse set has this property. We give the first relativized world where there exists a set with this property, and in this world the set A is sparse.
ISSN:1093-0159
2575-8403
DOI:10.1109/CCC.2003.1214431