Online entropy manipulation: stochastic information gradient
Entropy has found significant applications in numerous signal processing problems including independent components analysis and blind deconvolution. In general, entropy estimators require O(N/sup 2/) operations, N being the number of samples. For practical online entropy manipulation, it is desirabl...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2003-08, Vol.10 (8), p.242-245 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Entropy has found significant applications in numerous signal processing problems including independent components analysis and blind deconvolution. In general, entropy estimators require O(N/sup 2/) operations, N being the number of samples. For practical online entropy manipulation, it is desirable to determine a stochastic gradient for entropy, which has O(N) complexity. In this paper, we propose a stochastic Shannon's entropy estimator. We determine the corresponding stochastic gradient and investigate its performance. The proposed stochastic gradient for Shannon's entropy can be used in online adaptation problems where the optimization of an entropy-based cost function is necessary. |
---|---|
ISSN: | 1070-9908 1558-2361 |
DOI: | 10.1109/LSP.2003.814400 |