Evolutionary fault recovery in a Virtex FPGA using a representation that incorporates routing

Most evolutionary approaches to fault recovery in FPGA focus on evolving alternative logic configurations as opposed to evolving the intra-cell routing. Since the majority of transistors in a typical FPGA are dedicated to interconnect, nearly 80% according to one estimate, evolutionary fault-recover...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lohn, J., Larchev, G., DeMara, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most evolutionary approaches to fault recovery in FPGA focus on evolving alternative logic configurations as opposed to evolving the intra-cell routing. Since the majority of transistors in a typical FPGA are dedicated to interconnect, nearly 80% according to one estimate, evolutionary fault-recovery systems should benefit by accommodating routing. In this paper, we propose an evolutionary fault-recovery system employing a genetic representation that takes into account both logic and routing configurations. Experiments were run using a software model of the Xilinx Virtex FPGA. We report that using four Virtex combinational logic blocks, we were able to evolve a 100% accurate quadrature decoder finite state machine in the presence of a stuck-at-zero fault. Evolutionary experiments with the hardware in the loop have begun and we discuss the preliminary results.
ISSN:1530-2075
DOI:10.1109/IPDPS.2003.1213316