Influence of the substrate microstructure on the superconducting properties of YBCO coated conductors
The microstructure of Ni-5at%W (Ni-W) and Ni-11at%V (Ni-V) biaxially textured substrates has been investigated using X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). The correlation between the substrate microstructure and superconducting transport properties of YBa/sub 2/Cu/sub...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2003-06, Vol.13 (2), p.2591-2594 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The microstructure of Ni-5at%W (Ni-W) and Ni-11at%V (Ni-V) biaxially textured substrates has been investigated using X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). The correlation between the substrate microstructure and superconducting transport properties of YBa/sub 2/Cu/sub 3/O/sub 7-y/ (YBCO) film grown on it has been studied on the YBCO/CeO/sub 2//Ni-W and YBCO/CeO/sub 2//NiO/Ni-V architectures. Our study has ascertained that the in-plane texture of the substrates is one of the most important factors, limiting the critical current density. The Ni-V substrate has a lower percolation area due to the larger number of twinned grains and a broader in-plane angular distribution and, as a consequence, the YBa/sub 2/Cu/sub 3/O/sub 7-y/ (YBCO) film grown on it has a critical current density of 0.6 /spl times/ 10/sup 6/ A/cm/sup 2/, depressed by factor 2 with respect to YBCO grown on the Ni-W substrate. For the Ni-V substrate, another limiting factor is its low oxidation resistance. In contrast to Ni-V, the Ni-W substrate has a larger percolation area, mainly due to the absence of twinned grains, and a high oxidation resistance. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2003.811856 |