Texture feature neural classifier for remote sensing image retrieval systems
Texture information is useful for image data browsing and retrieval. The goal of this paper is to present a texture classification system for remote sensing images aimed at the administration of large collections of those images. The proposed classifier is a hybrid system composed by an unsupervised...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Texture information is useful for image data browsing and retrieval. The goal of this paper is to present a texture classification system for remote sensing images aimed at the administration of large collections of those images. The proposed classifier is a hybrid system composed by an unsupervised neural network and a supervised one. Starting from a small portion of the image (pattern) the system should recognize the most similar class to a pattern in a database as well as to identify images that contain similar patterns. The texture feature vectors used to characterize the patterns are obtained from the images processed by a bank of Gabor filters. Experimental results using textures of the Brodatz album, multi-spectral and radar images are presented. |
---|---|
ISSN: | 1530-1834 2377-5416 |
DOI: | 10.1109/SIBGRA.2002.1167129 |