A constraint sequent calculus

An axiomatic approach that accounts for examples that come up in logic programming, symbolic computation, affine geometry, and elsewhere is presented. It is shown that if disjunction behaves in an intuitionistic fashion, notions of canonical form for positive constraints can be systematically extend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lassez, J.-L., McAloon, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An axiomatic approach that accounts for examples that come up in logic programming, symbolic computation, affine geometry, and elsewhere is presented. It is shown that if disjunction behaves in an intuitionistic fashion, notions of canonical form for positive constraints can be systematically extended to include negative constraints. As a consequence, completeness theorems involving positive and negative constraints can be proven in a general setting for constraint propagation.< >
DOI:10.1109/LICS.1990.113733