Combining source transformation and operator overloading techniques to compute derivatives for MATLAB programs
Derivatives of mathematical functions play a key role in various areas of numerical and technical computing. Many of these computations are done in MATLAB, a popular environment for technical computing providing engineers and scientists with capabilities for mathematical computing, analysis, visuali...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Derivatives of mathematical functions play a key role in various areas of numerical and technical computing. Many of these computations are done in MATLAB, a popular environment for technical computing providing engineers and scientists with capabilities for mathematical computing, analysis, visualization, and algorithmic development. For functions written in the MATLAB language, a novel software tool is proposed to automatically transform a given MATLAB program into another MATLAB program capable of computing not only the original function but also user-specified derivatives of that function. That is, a program transformation known as automatic differentiation is performed to change the semantics of the program in a fashion based on the chain rule of differential calculus. The crucial ingredient of the tool is a combination of source-to-source transformation and operator overloading. The overall design of the tool is described and numerical experiments are reported demonstrating the efficiency of the resulting code for a sample problem. |
---|---|
DOI: | 10.1109/SCAM.2002.1134106 |