Mathematical Analogies Between First-Order Digital and Analog Phase-Locked Loops
This concise paper provides an exact analysis of the phase error statistics of a first-order digital phase-locked loop (DPLL) by soloing the chapman-Kolmogorov equation using the method of moments. Both time independent and time dependent solutions are presented. In addition, the parameters which ch...
Gespeichert in:
Veröffentlicht in: | I.R.E. transactions on communications systems 1978-06, Vol.26 (6), p.860-865 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This concise paper provides an exact analysis of the phase error statistics of a first-order digital phase-locked loop (DPLL) by soloing the chapman-Kolmogorov equation using the method of moments. Both time independent and time dependent solutions are presented. In addition, the parameters which characterize the performance of a DPLL are identified with those of an analog phase-locked loop (APLL). It is Shown under what design parameter conditions the solution provided herein for a DPLL is equivalent to that obtained by applying the Fokker-Planck equation to the analysis of an APLL. Numerical comparisons are provided for specific parameter ranges of interest in practice. |
---|---|
ISSN: | 0090-6778 0096-2244 1558-0857 |
DOI: | 10.1109/TCOM.1978.1094148 |