Canonical piecewise-linear analysis
Any continuous resistive nonlinear circuit can be approximated to any desired accuracy by a global piecewise-linear equation in the canonical form a + B x + \sum_{i=1}^{p}c_{i} |\langle \alpha_{i}, x \rangle - \beta_{i}|= 0 . All conventional circuit analysis methods (nodal, mesh, cut set, loop, hyb...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems 1983-03, Vol.30 (3), p.125-140 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Any continuous resistive nonlinear circuit can be approximated to any desired accuracy by a global piecewise-linear equation in the canonical form a + B x + \sum_{i=1}^{p}c_{i} |\langle \alpha_{i}, x \rangle - \beta_{i}|= 0 . All conventional circuit analysis methods (nodal, mesh, cut set, loop, hybrid, modified nodal, tableau) are shown to always yield an equation of this form, provided the only nonlinear elements are two-terminal resistors and controlled sources, each modeled by a one-dimensional piecewise-linear function. The well-known Katzenelson algorithm when applied to this equation yields an efficient algorithm which requires only a minimal computer storage. In the important special case when the canonical equation has a lattice structure (which always occur in the hybrid analysis), the algorithm is further refined to achieve a dramatic reduction in computation time. |
---|---|
ISSN: | 0098-4094 1558-1276 |
DOI: | 10.1109/TCS.1983.1085342 |