Canonical piecewise-linear analysis

Any continuous resistive nonlinear circuit can be approximated to any desired accuracy by a global piecewise-linear equation in the canonical form a + B x + \sum_{i=1}^{p}c_{i} |\langle \alpha_{i}, x \rangle - \beta_{i}|= 0 . All conventional circuit analysis methods (nodal, mesh, cut set, loop, hyb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems 1983-03, Vol.30 (3), p.125-140
Hauptverfasser: Chua, L., Ying, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Any continuous resistive nonlinear circuit can be approximated to any desired accuracy by a global piecewise-linear equation in the canonical form a + B x + \sum_{i=1}^{p}c_{i} |\langle \alpha_{i}, x \rangle - \beta_{i}|= 0 . All conventional circuit analysis methods (nodal, mesh, cut set, loop, hybrid, modified nodal, tableau) are shown to always yield an equation of this form, provided the only nonlinear elements are two-terminal resistors and controlled sources, each modeled by a one-dimensional piecewise-linear function. The well-known Katzenelson algorithm when applied to this equation yields an efficient algorithm which requires only a minimal computer storage. In the important special case when the canonical equation has a lattice structure (which always occur in the hybrid analysis), the algorithm is further refined to achieve a dramatic reduction in computation time.
ISSN:0098-4094
1558-1276
DOI:10.1109/TCS.1983.1085342