Photorefractive Integrated Photonics for Analog Signal Processing in AI

The computational cost of AI could be alleviated by accelerating the synaptic transfer calculations in artificial neural networks with an analog crossbar array processor. In this work, we present the core building blocks of an all-optical integrated photorefractive crossbar array for artificial neur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2025-05, Vol.31 (3: AI/ML Integrated Opto-electronics), p.1-10
Hauptverfasser: Vlieg, Elger A., Dangel, Roger, Offrein, Bert J., Horst, Folkert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The computational cost of AI could be alleviated by accelerating the synaptic transfer calculations in artificial neural networks with an analog crossbar array processor. In this work, we present the core building blocks of an all-optical integrated photorefractive crossbar array for artificial neural network training by demonstrating photorefractive synapses in an integrated 2-D beam interaction network. We show that the photorefractive quality of the circuits resembles that of the bulk GaAs crystal that they were fabricated from. Then, this work experimentally validates the integrated photorefractive crossbar array design and constitutes a framework for engineering photorefractive integrated photonics.
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2024.3519983