On Generating Explanations for Reinforcement Learning Policies: An Empirical Study

Explaining reinforcement learning policies is important for deploying them in real-world scenarios. We introduce a set of linear temporal logic formulae designed to provide such explanations, and an algorithm for searching through those formulae for the one that best explains a given policy. Our key...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2024-12, p.1-1
Hauptverfasser: Yuasa, Mikihisa, Tran, Huy T., Sreenivas, Ramavarapu S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Explaining reinforcement learning policies is important for deploying them in real-world scenarios. We introduce a set of linear temporal logic formulae designed to provide such explanations, and an algorithm for searching through those formulae for the one that best explains a given policy. Our key idea is to compare action distributions from the target policy with those from policies optimized for candidate explanations. This comparison provides more insight into the target policy than existing methods and avoids inference of "catch-all" explanations. We demonstrate our method in a simulated game of capture-the-flag, a car-parking environment, and a robot navigation task.
ISSN:2475-1456
DOI:10.1109/LCSYS.2024.3519301