Impact of Atmospheric Pressure Nonthermal Plasma on Curcumin-Loaded Polyvinyl Alcohol/Chitosan Polymer Films for Controlled Drug Release Application
The challenges in traditional drug delivery systems are increasing everyday which should be overcome by polymer-based controlled release systems. The utilization of nonthermal plasma has become pivotal in altering polymer surface properties and finds extensive applications in biomedical fields. In t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on plasma science 2024-12, p.1-23 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The challenges in traditional drug delivery systems are increasing everyday which should be overcome by polymer-based controlled release systems. The utilization of nonthermal plasma has become pivotal in altering polymer surface properties and finds extensive applications in biomedical fields. In this study, surface properties of curcumin-loaded PVA/chitosan films were altered by atmospheric pressure dielectric barrier discharge (DBD) plasma at 25 kV for various discharge gases and exposure durations. Contact angle measurement confirmed that argon and helium plasma treatment significantly enhanced the wettability of polymer films from 89.16 ^{\circ} to 32.73 ^{\circ} and 27.28 ^{\circ} , respectively. The introduction of new functional groups, alterations in surface morphology, and surface roughness values after plasma treatment was analyzed by Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) analyses. Optical emission spectroscopy (OES) identifies reactive species in the argon and helium plasma environment, facilitating the calculation of key plasma parameters such as electron temperature and density. In vitro drug release assessment reveals that plasma treatment regulates the drug release percentage from 78% to 27% and 24% under argon and helium plasma treatment. The overall data suggests that helium plasma is more effective than argon plasma in enhancing surface properties and this study underscores as a novel strategy for controlled drug delivery, thus advancing patient care standards. |
---|---|
ISSN: | 0093-3813 |
DOI: | 10.1109/TPS.2024.3513560 |