Assessment and Modeling of Green Roof System Hydrological Effectiveness in Runoff Control: A Case Study in Dublin

Green roofs are essential for urban greening and climate adaptation, especially in densely populated areas. Analyzing runoff reduction parameters is crucial for effectively designing and implementing these systems. This study enhances traditional assessments using advanced sensors to gather meteorol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.189689-189709
Hauptverfasser: Gholamnia, Mehdi, Sajadi, Payam, Khan, Salman, Sannigrahi, Srikanta, Ghaffarian, Saman, Shahabi, Himan, Pilla, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Green roofs are essential for urban greening and climate adaptation, especially in densely populated areas. Analyzing runoff reduction parameters is crucial for effectively designing and implementing these systems. This study enhances traditional assessments using advanced sensors to gather meteorological and hydrological data from four green roof installations at University College Dublin (UCD) in Dublin, Ireland. The comprehensive dataset enabled detailed modeling of runoff hydrograph parameters using rainfall hyetographs, which were subsequently analyzed through sophisticated machine learning algorithms. This research introduces an innovative approach by identifying the optimal combination of variables for modeling key runoff characteristics, including Water Retention Amount (WRA), Total RUnoff Volume (TRUV), Peak Runoff Discharge (PRD), and Peak Flow Reduction (PFR). The findings are compelling, with Support Vector Regression (SVR) achieving R2 values ranging from 0.67 to 0.82 and RMSE values ranging from 0.37 to 1.51 millimeters for WRA, TRUV, PRD, and PFR. XGBoost (XGB) demonstrated superior performance, with R2 values ranging from 0.77 to 0.84 and RMSE values ranging from 0.28 to 1.26 millimeters for the same parameters. Random Forest Regression (RF) also showed robust results, with R2 values ranging from 0.76 to 0.84 and RMSE values ranging from 0.31 to 1.29 millimeters. Overall, the green roof system demonstrated a water retention rate of 55.69% for the studied events. The study identifies Cumulative Rainfall Volume (CRV) and Peak Rainfall Intensity (PRI) as crucial for modeling runoff, highlighting green roofs' potential as sustainable urban infrastructure and offering key insights for their design and optimization.
ISSN:2169-3536
DOI:10.1109/ACCESS.2024.3516313