Derivation of Certification-Based Admissibility Dashboard of NMPC Implementation Settings: Framework and Associated Python Package

This brief presents a framework that delivers a certification-oriented dashboard of admissible nonlinear model predictive control (NMPC) implementation settings. This differs from the commonly adopted performance-centered tuning approaches by providing a dashboard of admissible setting options for w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2024-11, p.1-8
1. Verfasser: Alamir, Mazen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This brief presents a framework that delivers a certification-oriented dashboard of admissible nonlinear model predictive control (NMPC) implementation settings. This differs from the commonly adopted performance-centered tuning approaches by providing a dashboard of admissible setting options for which the optimal choice might be context-dependent. Some of the considered parameters are scarcely tuned in the literature on model predictive control (MPC)-parameter tuning such as the control updating period and the precision of the internal prediction. Moreover, a freely available Python-based implementation is also proposed, and typical results on an illustrative example are discussed highlighting the relevance of the contribution.
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2024.3499835