Derivation of Certification-Based Admissibility Dashboard of NMPC Implementation Settings: Framework and Associated Python Package
This brief presents a framework that delivers a certification-oriented dashboard of admissible nonlinear model predictive control (NMPC) implementation settings. This differs from the commonly adopted performance-centered tuning approaches by providing a dashboard of admissible setting options for w...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2024-11, p.1-8 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This brief presents a framework that delivers a certification-oriented dashboard of admissible nonlinear model predictive control (NMPC) implementation settings. This differs from the commonly adopted performance-centered tuning approaches by providing a dashboard of admissible setting options for which the optimal choice might be context-dependent. Some of the considered parameters are scarcely tuned in the literature on model predictive control (MPC)-parameter tuning such as the control updating period and the precision of the internal prediction. Moreover, a freely available Python-based implementation is also proposed, and typical results on an illustrative example are discussed highlighting the relevance of the contribution. |
---|---|
ISSN: | 1063-6536 1558-0865 |
DOI: | 10.1109/TCST.2024.3499835 |