Think Step by Step: Chain-of-Gesture Prompting for Error Detection in Robotic Surgical Videos

Despite advancements in robotic systems and surgical data science, ensuring safe execution in robot-assisted minimally invasive surgery (RMIS) remains challenging. Current methods for surgical error detection typically involve two parts: identifying gestures and then detecting errors within each ges...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2024-12, Vol.9 (12), p.11513-11520
Hauptverfasser: Shao, Zhimin, Xu, Jialang, Stoyanov, Danail, Mazomenos, Evangelos B., Jin, Yueming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite advancements in robotic systems and surgical data science, ensuring safe execution in robot-assisted minimally invasive surgery (RMIS) remains challenging. Current methods for surgical error detection typically involve two parts: identifying gestures and then detecting errors within each gesture clip. These methods often overlook the rich contextual and semantic information inherent in surgical videos, with limited performance due to reliance on accurate gesture identification. Inspired by the chain-of-thought prompting in natural language processing, this letter presents a novel and real-time end-to-end error detection framework, Chain-of-Gesture (COG) prompting, integrating contextual information from surgical videos step by step. This encompasses two reasoning modules that simulate expert surgeons' decision-making: a Gestural-Visual Reasoning module using transformer and attention architectures for gesture prompting and a Multi-Scale Temporal Reasoning module employing a multi-stage temporal convolutional network with slow and fast paths for temporal information extraction. We validate our method on the JIGSAWS dataset and show improvements over the state-of-the-art, achieving 4.6% higher F1 score, 4.6% higher Accuracy, and 5.9% higher Jaccard index, with an average frame processing time of 6.69 milliseconds. This demonstrates our approach's potential to enhance RMIS safety and surgical education efficacy.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2024.3495452