Sampling in Parametric and Nonparametric System Identification: Aliasing, Input Conditions, and Consistency

The sampling rate of input and output signals is known to play a critical role in the identification and control of dynamical systems. For slow-sampled continuous-time systems that do not satisfy the Nyquist-Shannon sampling condition for perfect signal reconstructability, careful consideration is r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2024, Vol.8, p.2415-2420
Hauptverfasser: Gonzalez, Rodrigo A., van Haren, Max, Oomen, Tom, Rojas, Cristian R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sampling rate of input and output signals is known to play a critical role in the identification and control of dynamical systems. For slow-sampled continuous-time systems that do not satisfy the Nyquist-Shannon sampling condition for perfect signal reconstructability, careful consideration is required when identifying parametric and nonparametric models. In this letter, a comprehensive statistical analysis of estimators under slow sampling is performed. Necessary and sufficient conditions are obtained for unbiased estimates of the frequency response function beyond the Nyquist frequency, and it is shown that consistency of parametric estimators can be achieved even if input frequencies overlap after aliasing. Monte Carlo simulations confirm the theoretical properties.
ISSN:2475-1456
2475-1456
DOI:10.1109/LCSYS.2024.3487501