Optical circuit switched three-stage twisted-folded Clos-network design model guaranteeing admissible blocking probability

Some data center networks have already started to use optical circuit switching (OCS) with potential performance benefits, including high capacity, low latency, and energy efficiency. This paper addresses a switching network design to maximize the network radix, i.e., the number of terminals connect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optical communications and networking 2024-11, Vol.16 (11), p.1104-1115
Hauptverfasser: Taniguchi, Ryotaro, Inoue, Takeru, Anazawa, Kazuya, Oki, Eiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Some data center networks have already started to use optical circuit switching (OCS) with potential performance benefits, including high capacity, low latency, and energy efficiency. This paper addresses a switching network design to maximize the network radix, i.e., the number of terminals connected to the network under the condition that a specified number of identical switches with the size N \times N and the maximum admissible blocking probability are given. Previous work presented a two-stage twisted and folded Clos network (TF-Clos) with a blocking probability guarantee for OCS, which has a larger network radix than TF-Clos with a strict-sense non-blocking condition. Expanding the number of stages allows for enhancing the network radix. This paper proposes a model designing an OCS three-stage TF-Clos structure with a blocking probability guarantee to increase the network radix compared to the two-stage TF-Clos. We formulate the problem of obtaining the network configuration that maximizes the network radix as an optimization problem. We conduct an algorithm based on an exhaustive search to obtain a feasible solution satisfying the constraints of the optimization problem. This algorithm identifies the structure with the largest network radix in non-increasing order to avoid unnecessary searches. Numerical results show that the proposed model achieves a larger network radix than the two-stage model.
ISSN:1943-0620
1943-0639
DOI:10.1364/JOCN.535282