Gilbert-Varshamov Bound for Codes in L₁ Metric Using Multivariate Analytic Combinatorics

Analytic combinatorics in several variables refers to a suite of tools that provide sharp asymptotic estimates for certain combinatorial quantities. In this paper, we apply these tools to determine the Gilbert-Varshamov lower bound on the rate of optimal codes in L_{1} metric. Several different co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2025-01, Vol.71 (1), p.244-262
Hauptverfasser: Goyal, Keshav, Tu Dao, Duc, Kovacevic, Mladen, Mao Kiah, Han
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analytic combinatorics in several variables refers to a suite of tools that provide sharp asymptotic estimates for certain combinatorial quantities. In this paper, we apply these tools to determine the Gilbert-Varshamov lower bound on the rate of optimal codes in L_{1} metric. Several different code spaces are analyzed, including the simplex and the hypercube in {\mathbb {Z}}^{n} , all of which are inspired by concrete data storage and transmission models such as the permutation channel, the repetition channel, the adjacent transposition (bit-shift) channel, the multilevel flash memory channel, etc.
ISSN:0018-9448
DOI:10.1109/TIT.2024.3483303