Gilbert-Varshamov Bound for Codes in L₁ Metric Using Multivariate Analytic Combinatorics
Analytic combinatorics in several variables refers to a suite of tools that provide sharp asymptotic estimates for certain combinatorial quantities. In this paper, we apply these tools to determine the Gilbert-Varshamov lower bound on the rate of optimal codes in L_{1} metric. Several different co...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2025-01, Vol.71 (1), p.244-262 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Analytic combinatorics in several variables refers to a suite of tools that provide sharp asymptotic estimates for certain combinatorial quantities. In this paper, we apply these tools to determine the Gilbert-Varshamov lower bound on the rate of optimal codes in L_{1} metric. Several different code spaces are analyzed, including the simplex and the hypercube in {\mathbb {Z}}^{n} , all of which are inspired by concrete data storage and transmission models such as the permutation channel, the repetition channel, the adjacent transposition (bit-shift) channel, the multilevel flash memory channel, etc. |
---|---|
ISSN: | 0018-9448 |
DOI: | 10.1109/TIT.2024.3483303 |