Pulse compression using angular multiplexing in a high-gain 1.7 kJ amplifier
Pulse compression using angular multiplexing is demonstrated on a large-scale hydrogen-fluoride (HF) laser system. For a train of two 24 ns pulses, the essential elements of this scheme are evaluated as a function of interpulse separation time. Included are energy-extraction efficiency, overall temp...
Gespeichert in:
Veröffentlicht in: | IEEE journal of quantum electronics 1981-09, Vol.17 (9), p.1836-1840 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pulse compression using angular multiplexing is demonstrated on a large-scale hydrogen-fluoride (HF) laser system. For a train of two 24 ns pulses, the essential elements of this scheme are evaluated as a function of interpulse separation time. Included are energy-extraction efficiency, overall temporal pulse distortion, leading-edge contrast-ratio distortion, and suppression of amplified spontaneous emission (ASE) relative to a single long-duration input pulse. For appropriate interpulse delay time, we show that distortionless amplification is possible with energy-extraction efficiency, as is obtained using a single input beam having a pulsewidth equal to the duration of the amplifier gain. |
---|---|
ISSN: | 0018-9197 1558-1713 |
DOI: | 10.1109/JQE.1981.1071326 |