GPT-4V(ision) for Robotics: Multimodal Task Planning From Human Demonstration

We introduce a pipeline that enhances a general-purpose Vision Language Model, GPT-4V(ision), to facilitate one-shot visual teaching for robotic manipulation. This system analyzes videos of humans performing tasks and outputs executable robot programs that incorporate insights into affordances. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2024-11, Vol.9 (11), p.10567-10574
Hauptverfasser: Wake, Naoki, Kanehira, Atsushi, Sasabuchi, Kazuhiro, Takamatsu, Jun, Ikeuchi, Katsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10574
container_issue 11
container_start_page 10567
container_title IEEE robotics and automation letters
container_volume 9
creator Wake, Naoki
Kanehira, Atsushi
Sasabuchi, Kazuhiro
Takamatsu, Jun
Ikeuchi, Katsushi
description We introduce a pipeline that enhances a general-purpose Vision Language Model, GPT-4V(ision), to facilitate one-shot visual teaching for robotic manipulation. This system analyzes videos of humans performing tasks and outputs executable robot programs that incorporate insights into affordances. The process begins with GPT-4 V analyzing the videos to obtain textual explanations of environmental and action details. A GPT-4-based task planner then encodes these details into a symbolic task plan. Subsequently, vision systems spatially and temporally ground the task plan in the videos-objects are identified using an open-vocabulary object detector, and hand-object interactions are analyzed to pinpoint moments of grasping and releasing. This spatiotemporal grounding allows for the gathering of affordance information (e.g., grasp types, waypoints, and body postures) critical for robot execution. Experiments across various scenarios demonstrate the method's efficacy in enabling real robots to operate from one-shot human demonstrations. Meanwhile, quantitative tests have revealed instances of hallucination in GPT-4 V, highlighting the importance of incorporating human supervision within the pipeline.
doi_str_mv 10.1109/LRA.2024.3477090
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10711245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10711245</ieee_id><sourcerecordid>3117128646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-2e61c1dfe2625d3745a9f13a716431173b32a5ef69935cbae7f01d027680d0303</originalsourceid><addsrcrecordid>eNpNkMFPwjAUxhujiQS5e_DQxIsehu-1W8u8ERAwgUgIem3K1pnh1mK7HfzvHYEDp_cdvt_3kh8h9whDREhflpvxkAGLhzyWElK4Ij3GpYy4FOL6It-SQQh7AMCESZ4mPbKar7dR_PVUhtLZZ1o4Tzdu55oyC6901VZNWbtcV3Srww9dV9ra0n7TmXc1XbS1tnRqamdD43XTDdyRm0JXwQzOt08-Z2_bySJafszfJ-NllDGUTcSMwAzzwjDBkpzLONFpgVxLFDFHlHzHmU5MIdKUJ9lOG1kA5sCkGEEOHHifPJ52D979tiY0au9ab7uX6sgjG4lYdC04tTLvQvCmUAdf1tr_KQR19KY6b-roTZ29dcjDCSmNMRd1icjihP8Db1VmlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117128646</pqid></control><display><type>article</type><title>GPT-4V(ision) for Robotics: Multimodal Task Planning From Human Demonstration</title><source>IEEE Electronic Library (IEL)</source><creator>Wake, Naoki ; Kanehira, Atsushi ; Sasabuchi, Kazuhiro ; Takamatsu, Jun ; Ikeuchi, Katsushi</creator><creatorcontrib>Wake, Naoki ; Kanehira, Atsushi ; Sasabuchi, Kazuhiro ; Takamatsu, Jun ; Ikeuchi, Katsushi</creatorcontrib><description>We introduce a pipeline that enhances a general-purpose Vision Language Model, GPT-4V(ision), to facilitate one-shot visual teaching for robotic manipulation. This system analyzes videos of humans performing tasks and outputs executable robot programs that incorporate insights into affordances. The process begins with GPT-4 V analyzing the videos to obtain textual explanations of environmental and action details. A GPT-4-based task planner then encodes these details into a symbolic task plan. Subsequently, vision systems spatially and temporally ground the task plan in the videos-objects are identified using an open-vocabulary object detector, and hand-object interactions are analyzed to pinpoint moments of grasping and releasing. This spatiotemporal grounding allows for the gathering of affordance information (e.g., grasp types, waypoints, and body postures) critical for robot execution. Experiments across various scenarios demonstrate the method's efficacy in enabling real robots to operate from one-shot human demonstrations. Meanwhile, quantitative tests have revealed instances of hallucination in GPT-4 V, highlighting the importance of incorporating human supervision within the pipeline.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3477090</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Affordances ; Collision avoidance ; Data models ; Grasping (robotics) ; Grounding ; imitation learning ; Machine vision ; Pipelines ; Planning ; Robotics ; Robots ; Task and motion planning ; task planning ; Task planning (robotics) ; Training ; Video ; Vision systems ; Visual tasks ; Visualization</subject><ispartof>IEEE robotics and automation letters, 2024-11, Vol.9 (11), p.10567-10574</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-2e61c1dfe2625d3745a9f13a716431173b32a5ef69935cbae7f01d027680d0303</cites><orcidid>0000-0001-9758-9357 ; 0000-0001-7457-2878 ; 0009-0005-0157-7500 ; 0000-0001-8278-2373 ; 0000-0002-5408-3089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10711245$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Wake, Naoki</creatorcontrib><creatorcontrib>Kanehira, Atsushi</creatorcontrib><creatorcontrib>Sasabuchi, Kazuhiro</creatorcontrib><creatorcontrib>Takamatsu, Jun</creatorcontrib><creatorcontrib>Ikeuchi, Katsushi</creatorcontrib><title>GPT-4V(ision) for Robotics: Multimodal Task Planning From Human Demonstration</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>We introduce a pipeline that enhances a general-purpose Vision Language Model, GPT-4V(ision), to facilitate one-shot visual teaching for robotic manipulation. This system analyzes videos of humans performing tasks and outputs executable robot programs that incorporate insights into affordances. The process begins with GPT-4 V analyzing the videos to obtain textual explanations of environmental and action details. A GPT-4-based task planner then encodes these details into a symbolic task plan. Subsequently, vision systems spatially and temporally ground the task plan in the videos-objects are identified using an open-vocabulary object detector, and hand-object interactions are analyzed to pinpoint moments of grasping and releasing. This spatiotemporal grounding allows for the gathering of affordance information (e.g., grasp types, waypoints, and body postures) critical for robot execution. Experiments across various scenarios demonstrate the method's efficacy in enabling real robots to operate from one-shot human demonstrations. Meanwhile, quantitative tests have revealed instances of hallucination in GPT-4 V, highlighting the importance of incorporating human supervision within the pipeline.</description><subject>Affordances</subject><subject>Collision avoidance</subject><subject>Data models</subject><subject>Grasping (robotics)</subject><subject>Grounding</subject><subject>imitation learning</subject><subject>Machine vision</subject><subject>Pipelines</subject><subject>Planning</subject><subject>Robotics</subject><subject>Robots</subject><subject>Task and motion planning</subject><subject>task planning</subject><subject>Task planning (robotics)</subject><subject>Training</subject><subject>Video</subject><subject>Vision systems</subject><subject>Visual tasks</subject><subject>Visualization</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkMFPwjAUxhujiQS5e_DQxIsehu-1W8u8ERAwgUgIem3K1pnh1mK7HfzvHYEDp_cdvt_3kh8h9whDREhflpvxkAGLhzyWElK4Ij3GpYy4FOL6It-SQQh7AMCESZ4mPbKar7dR_PVUhtLZZ1o4Tzdu55oyC6901VZNWbtcV3Srww9dV9ra0n7TmXc1XbS1tnRqamdD43XTDdyRm0JXwQzOt08-Z2_bySJafszfJ-NllDGUTcSMwAzzwjDBkpzLONFpgVxLFDFHlHzHmU5MIdKUJ9lOG1kA5sCkGEEOHHifPJ52D979tiY0au9ab7uX6sgjG4lYdC04tTLvQvCmUAdf1tr_KQR19KY6b-roTZ29dcjDCSmNMRd1icjihP8Db1VmlQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Wake, Naoki</creator><creator>Kanehira, Atsushi</creator><creator>Sasabuchi, Kazuhiro</creator><creator>Takamatsu, Jun</creator><creator>Ikeuchi, Katsushi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9758-9357</orcidid><orcidid>https://orcid.org/0000-0001-7457-2878</orcidid><orcidid>https://orcid.org/0009-0005-0157-7500</orcidid><orcidid>https://orcid.org/0000-0001-8278-2373</orcidid><orcidid>https://orcid.org/0000-0002-5408-3089</orcidid></search><sort><creationdate>20241101</creationdate><title>GPT-4V(ision) for Robotics: Multimodal Task Planning From Human Demonstration</title><author>Wake, Naoki ; Kanehira, Atsushi ; Sasabuchi, Kazuhiro ; Takamatsu, Jun ; Ikeuchi, Katsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-2e61c1dfe2625d3745a9f13a716431173b32a5ef69935cbae7f01d027680d0303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Affordances</topic><topic>Collision avoidance</topic><topic>Data models</topic><topic>Grasping (robotics)</topic><topic>Grounding</topic><topic>imitation learning</topic><topic>Machine vision</topic><topic>Pipelines</topic><topic>Planning</topic><topic>Robotics</topic><topic>Robots</topic><topic>Task and motion planning</topic><topic>task planning</topic><topic>Task planning (robotics)</topic><topic>Training</topic><topic>Video</topic><topic>Vision systems</topic><topic>Visual tasks</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wake, Naoki</creatorcontrib><creatorcontrib>Kanehira, Atsushi</creatorcontrib><creatorcontrib>Sasabuchi, Kazuhiro</creatorcontrib><creatorcontrib>Takamatsu, Jun</creatorcontrib><creatorcontrib>Ikeuchi, Katsushi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wake, Naoki</au><au>Kanehira, Atsushi</au><au>Sasabuchi, Kazuhiro</au><au>Takamatsu, Jun</au><au>Ikeuchi, Katsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPT-4V(ision) for Robotics: Multimodal Task Planning From Human Demonstration</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>9</volume><issue>11</issue><spage>10567</spage><epage>10574</epage><pages>10567-10574</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>We introduce a pipeline that enhances a general-purpose Vision Language Model, GPT-4V(ision), to facilitate one-shot visual teaching for robotic manipulation. This system analyzes videos of humans performing tasks and outputs executable robot programs that incorporate insights into affordances. The process begins with GPT-4 V analyzing the videos to obtain textual explanations of environmental and action details. A GPT-4-based task planner then encodes these details into a symbolic task plan. Subsequently, vision systems spatially and temporally ground the task plan in the videos-objects are identified using an open-vocabulary object detector, and hand-object interactions are analyzed to pinpoint moments of grasping and releasing. This spatiotemporal grounding allows for the gathering of affordance information (e.g., grasp types, waypoints, and body postures) critical for robot execution. Experiments across various scenarios demonstrate the method's efficacy in enabling real robots to operate from one-shot human demonstrations. Meanwhile, quantitative tests have revealed instances of hallucination in GPT-4 V, highlighting the importance of incorporating human supervision within the pipeline.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3477090</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9758-9357</orcidid><orcidid>https://orcid.org/0000-0001-7457-2878</orcidid><orcidid>https://orcid.org/0009-0005-0157-7500</orcidid><orcidid>https://orcid.org/0000-0001-8278-2373</orcidid><orcidid>https://orcid.org/0000-0002-5408-3089</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2024-11, Vol.9 (11), p.10567-10574
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_10711245
source IEEE Electronic Library (IEL)
subjects Affordances
Collision avoidance
Data models
Grasping (robotics)
Grounding
imitation learning
Machine vision
Pipelines
Planning
Robotics
Robots
Task and motion planning
task planning
Task planning (robotics)
Training
Video
Vision systems
Visual tasks
Visualization
title GPT-4V(ision) for Robotics: Multimodal Task Planning From Human Demonstration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPT-4V(ision)%20for%20Robotics:%20Multimodal%20Task%20Planning%20From%20Human%20Demonstration&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Wake,%20Naoki&rft.date=2024-11-01&rft.volume=9&rft.issue=11&rft.spage=10567&rft.epage=10574&rft.pages=10567-10574&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3477090&rft_dat=%3Cproquest_ieee_%3E3117128646%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117128646&rft_id=info:pmid/&rft_ieee_id=10711245&rfr_iscdi=true