GPT-4V(ision) for Robotics: Multimodal Task Planning From Human Demonstration

We introduce a pipeline that enhances a general-purpose Vision Language Model, GPT-4V(ision), to facilitate one-shot visual teaching for robotic manipulation. This system analyzes videos of humans performing tasks and outputs executable robot programs that incorporate insights into affordances. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2024-11, Vol.9 (11), p.10567-10574
Hauptverfasser: Wake, Naoki, Kanehira, Atsushi, Sasabuchi, Kazuhiro, Takamatsu, Jun, Ikeuchi, Katsushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a pipeline that enhances a general-purpose Vision Language Model, GPT-4V(ision), to facilitate one-shot visual teaching for robotic manipulation. This system analyzes videos of humans performing tasks and outputs executable robot programs that incorporate insights into affordances. The process begins with GPT-4 V analyzing the videos to obtain textual explanations of environmental and action details. A GPT-4-based task planner then encodes these details into a symbolic task plan. Subsequently, vision systems spatially and temporally ground the task plan in the videos-objects are identified using an open-vocabulary object detector, and hand-object interactions are analyzed to pinpoint moments of grasping and releasing. This spatiotemporal grounding allows for the gathering of affordance information (e.g., grasp types, waypoints, and body postures) critical for robot execution. Experiments across various scenarios demonstrate the method's efficacy in enabling real robots to operate from one-shot human demonstrations. Meanwhile, quantitative tests have revealed instances of hallucination in GPT-4 V, highlighting the importance of incorporating human supervision within the pipeline.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2024.3477090