Gotta Match 'Em All: Solution Diversification in Graph Matching Matched Filters
We present a novel approach for finding multiple noisily embedded template graphs in a very large background graph. Our method builds upon the graph-matching-matched-filter technique proposed in Sussman et al. (Sussman, 2020), with the discovery of multiple diverse matchings being achieved by iterat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal and information processing over networks 2024, Vol.10, p.752-764 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a novel approach for finding multiple noisily embedded template graphs in a very large background graph. Our method builds upon the graph-matching-matched-filter technique proposed in Sussman et al. (Sussman, 2020), with the discovery of multiple diverse matchings being achieved by iteratively penalizing a suitable node-pair similarity matrix in the matched filter algorithm. In addition, we propose algorithmic speed-ups that greatly enhance the scalability of our matched-filter approach. We present theoretical justification of our methodology in the setting of correlated Erdős-Rényi graphs, showing its ability to sequentially discover multiple templates under mild model conditions. We additionally demonstrate our method's utility via extensive experiments both using simulated models and real-world datasets, including human brain connectomes and a large transactional knowledge base. |
---|---|
ISSN: | 2373-776X 2373-7778 |
DOI: | 10.1109/TSIPN.2024.3467921 |