A Modality-Flexible Framework for Alzheimer's Disease Diagnosis Following Clinical Routine

Dementia has high incidence among the elderly, and Alzheimer's disease (AD) is the most common dementia. The procedure of AD diagnosis in clinics usually follows a standard routine consisting of different phases, from acquiring non-imaging tabular data in the screening phase to MR imaging and u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2024-10, Vol.PP (1), p.1-12
Hauptverfasser: Zhang, Yuanwang, Sun, Kaicong, Liu, Yuxiao, Xie, Fang, Guo, Qihao, Shen, Dinggang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dementia has high incidence among the elderly, and Alzheimer's disease (AD) is the most common dementia. The procedure of AD diagnosis in clinics usually follows a standard routine consisting of different phases, from acquiring non-imaging tabular data in the screening phase to MR imaging and ultimately to PET imaging. Most of the existing AD diagnosis studies are dedicated to a specific phase using either single or multi-modal data. In this paper, we introduce a modality-flexible classification framework, which is applicable for different AD diagnosis phases following the clinical routine. Specifically, our framework consists of three branches corresponding to three diagnosis phases: 1) a tabular branch using only tabular data for screening phase, 2) an MRI branch using both MRI and tabular data for uncertain cases in screening phase, and 3) ultimately a PET branch for the challenging cases using all the modalities including PET, MRI, and tabular data. To achieve effective fusion of imaging and non-imaging modalities, we introduce an image-tabular transformer block to adaptively scale and shift the image and tabular features according to modality importance determined by the network. The proposed framework is extensively validated on four cohorts containing 6495 subjects. Experiments demonstrate that our framework achieves superior diagnostic performance than the other representative methods across various AD diagnosis tasks, and shows promising performance for all the diagnosis phases, which exhibits great potential for clinical application.
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2024.3472011