Generative Learning Powered Probing Beam Optimization for Cell-Free Hybrid Beamforming

Probing beam measurement (PBM)-based hybrid beamforming provides a feasible solution for cell-free MIMO. In this letter, we propose a novel probing beam optimization framework where three collaborative modules respectively realize PBM augmentation, sum-rate prediction and probing beam optimization....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2024-09, p.1-1
Hauptverfasser: Zhang, Cheng, Xiong, Shuangbo, He, Mengqing, Wei, Lan, Huang, Yongming, Zhang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Probing beam measurement (PBM)-based hybrid beamforming provides a feasible solution for cell-free MIMO. In this letter, we propose a novel probing beam optimization framework where three collaborative modules respectively realize PBM augmentation, sum-rate prediction and probing beam optimization. Specifically, the PBM augmentation model integrates the conditional variational auto-encoder (CVAE) and mixture density networks and adopts correlated PBM distribution with full-covariance, for which a Cholesky-decomposition based training is introduced to address the issues of covariance legality and numerical stability. Simulations verify the better performance of the proposed augmentation model compared to the traditional CVAE and the efficiency of proposed optimization framework.
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2024.3466117