A High-Frequency CMOS Meminductor Emulator for Spiking Neuron

This research introduces a high-frequency CMOS meminductor, utilizing operational transconductance amplifiers and two grounded capacitors, thereby avoiding traditional components such as memristors, multipliers, and resistors. The design stands out for its simplicity and electronic adjustability, wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2024-09, p.1-12
Hauptverfasser: Singh, Ankur, Kim, Dowon, Lee, Hyunkeun, Lee, Byung-Geun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research introduces a high-frequency CMOS meminductor, utilizing operational transconductance amplifiers and two grounded capacitors, thereby avoiding traditional components such as memristors, multipliers, and resistors. The design stands out for its simplicity and electronic adjustability, which facilitates control of the induced flux by altering the transconductance gain. We conducted transistor-level simulations with 180 nm CMOS technology to evaluate the meminductor's performance across various parameters including voltage, frequency, temperature, process corner variations, and monte carlo simulations. These extensive tests confirm the durability and adaptability of the emulator across diverse conditions. The emulators operate up to 20 MHz with a remarkably low power consumption of just 0.44 mW, showcasing considerable efficiency. The practical applications of the proposed meminductor include advanced uses in developing leaky integrate and fire neuron. Additionally, we successfully fabricated the first physical meminductor emulator chip, which occupies a die area of 2032.7 \mu m ^{2} using a 180 nm CMOS process. The integration of these fabrication results helps corroborate the theoretical derivations presented. This convergence of practical fabrication and theoretical insight signifies a major leap in meminductor technology, hinting at wide-ranging future applications in electronic systems.
ISSN:1549-8328
1558-0806
DOI:10.1109/TCSI.2024.3454553