Methodology Using Idle Capacity of Hydroelectric Substations for Sizing Floating Photovoltaic Plants
Photovoltaic (PV) generation has emerged as an alternative for reducing environmental impacts. Recently, floating photovoltaic (FPV) configurations have gained popularity, utilizing the water surface of reservoirs as installation sites. Recognizing its potential, this paper proposes a methodology to...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2024-09, Vol.22 (9), p.771-777 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photovoltaic (PV) generation has emerged as an alternative for reducing environmental impacts. Recently, floating photovoltaic (FPV) configurations have gained popularity, utilizing the water surface of reservoirs as installation sites. Recognizing its potential, this paper proposes a methodology to harness the idle capacity of substation facilities in hydroelectric power plants (HPP) for sizing FPV plants, aiming for the maximal utilization of the substation's capacity and promoting complementarity with HPP generation. The study introduces a sizing proposal for FPV based on complementarity with the worst day of HPP generation within a defined period, aiming to utilize 100% of the substation's capacity. As a case study, the FPV potential is identified as 59.81 GWp for Belo Monte and 55.35 GWp for Itaipu. This approach seeks to enhance the overall efficiency and sustainability of power generation systems by integrating FPV with existing hydroelectric infrastructure. |
---|---|
ISSN: | 1548-0992 1548-0992 |
DOI: | 10.1109/TLA.2024.10669249 |