Weighted Ensembles for Adaptive Active Learning
Labeled data can be expensive to acquire in several application domains, including medical imaging, robotics, computer vision and wireless networks to list a few. To efficiently train machine learning models under such high labeling costs, active learning (AL) judiciously selects the most informativ...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2024, Vol.72, p.4178-4190 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Labeled data can be expensive to acquire in several application domains, including medical imaging, robotics, computer vision and wireless networks to list a few. To efficiently train machine learning models under such high labeling costs, active learning (AL) judiciously selects the most informative data instances to label on-the-fly. This active sampling process can benefit from a statistical function model, that is typically captured by a Gaussian process (GP) with well-documented merits especially in the regression task. While most GP-based AL approaches rely on a single kernel function, the present contribution advocates an ensemble of GP (EGP) models with weights adapted to the labeled data collected incrementally. Building on this novel EGP model, a suite of acquisition functions emerges based on the uncertainty and disagreement rules. An adaptively weighted ensemble of EGP-based acquisition functions is advocated to further robustify performance. Extensive tests on synthetic and real datasets in the regression task showcase the merits of the proposed EGP-based approaches with respect to the single GP-based AL alternatives. |
---|---|
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/TSP.2024.3450270 |