Time-Efficient Blockchain-Based Federated Learning
Federated Learning (FL) is a distributed machine learning method that ensures the privacy and security of participants' data by avoiding direct data upload to a central node for training. However, the traditional FL typically applies a star structure with cloud servers as the central aggregator...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on networking 2024-12, Vol.32 (6), p.4885-4900 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Federated Learning (FL) is a distributed machine learning method that ensures the privacy and security of participants' data by avoiding direct data upload to a central node for training. However, the traditional FL typically applies a star structure with cloud servers as the central aggregator for the model parameters from different terminals, leading to problems such as central failure, malicious tampering and malicious participants, resulting in training errors or system crashes. To address these issues, a permissioned blockchain is used to build a secure and reliable data-sharing platform among participating terminals, replacing the central aggregator in the traditional FL called blockchain-based federated learning. However, the block generation method of the blockchain system may introduce significant latency in the federated learning where distributed model parameters upload randomly, resulting in low efficiency of the federated learning. To overcome this, we propose a block generation strategy that groups terminals and generates a block for each group, which minimizes the latency of a single round of federated learning, and an optimal block generation algorithm that considers data distribution, terminal resources, and network resources is provided. The analysis shows that the proposed algorithm can effectively obtain the optimal solution of block generation to minimize the authentication time, and we conduct extensive experiments that demonstrate the time efficiency of the proposed algorithm. |
---|---|
ISSN: | 1063-6692 1558-2566 |
DOI: | 10.1109/TNET.2024.3436862 |