GeoDTR+: Toward Generic Cross-View Geolocalization via Geometric Disentanglement

Cross-View Geo-Localization (CVGL) estimates the location of a ground image by matching it to a geo-tagged aerial image in a database. Recent works achieve outstanding progress on CVGL benchmarks. However, existing methods still suffer from poor performance in cross-area evaluation, in which the tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2024-12, Vol.46 (12), p.10419-10433
Hauptverfasser: Zhang, Xiaohan, Li, Xingyu, Sultani, Waqas, Chen, Chen, Wshah, Safwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10433
container_issue 12
container_start_page 10419
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 46
creator Zhang, Xiaohan
Li, Xingyu
Sultani, Waqas
Chen, Chen
Wshah, Safwan
description Cross-View Geo-Localization (CVGL) estimates the location of a ground image by matching it to a geo-tagged aerial image in a database. Recent works achieve outstanding progress on CVGL benchmarks. However, existing methods still suffer from poor performance in cross-area evaluation, in which the training and testing data are captured from completely distinct areas. We attribute this deficiency to the lack of ability to extract the geometric layout of visual features and models' overfitting to low-level details. Our preliminary work (Zhang et al. 2022) introduced a Geometric Layout Extractor (GLE) to capture the geometric layout from input features. However, the previous GLE does not fully exploit information in the input feature. In this work, we propose GeoDTR+ with an enhanced GLE module that better models the correlations among visual features. To fully explore the LS techniques from our preliminary work, we further propose Contrastive Hard Samples Generation (CHSG) to facilitate model training. Extensive experiments show that GeoDTR+ achieves state-of-the-art (SOTA) results in cross-area evaluation on CVUSA (Workman et al. 2015), CVACT (Liu and Li, 2019), and VIGOR (Zhu et al. 2021) by a large margin (16.44%, 22.71%, and 13.66% without polar transformation) while keeping the same-area performance comparable to existing SOTA. Moreover, we provide detailed analyses of GeoDTR+.
doi_str_mv 10.1109/TPAMI.2024.3443652
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10636837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10636837</ieee_id><sourcerecordid>3093170869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1642-4d6f273991f9c4adfd9c4de983c9d574b65a2d508e24ff1f7da15ed396869b533</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMobk7_gIjsUpDOJCdNG-_GplOYOKR6W7LmRCL9mE3n0F9v66Z4dQ6H533hPIScMjpijKqrZDF-uB9xysUIhAAZ8j3SZwpUACGofdKnTPIgjnncI0fev1HKREjhkPRAMcFExPtkMcNqmjxdXg-TaqNrM5xhibXLhpO68j54cbhpT1VeZTp3X7pxVTn8cLq7Fdh04NR5LBtdvuZYtMsxObA693iymwPyfHuTTO6C-ePsfjKeBxmTggfCSMsjUIpZlQltrGmHQRVDpkwYiaUMNTchjZELa5mNjGYhGlAylmoZAgzIxbZ3VVfva_RNWjifYZ7rEqu1T4EqYBFt6RblWzTrfqrRpqvaFbr-TBlNO5Ppj8m0M5nuTLah813_elmg-Yv8qmuBsy3gEPFfowQZQwTfm0J3cA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3093170869</pqid></control><display><type>article</type><title>GeoDTR+: Toward Generic Cross-View Geolocalization via Geometric Disentanglement</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xiaohan ; Li, Xingyu ; Sultani, Waqas ; Chen, Chen ; Wshah, Safwan</creator><creatorcontrib>Zhang, Xiaohan ; Li, Xingyu ; Sultani, Waqas ; Chen, Chen ; Wshah, Safwan</creatorcontrib><description>Cross-View Geo-Localization (CVGL) estimates the location of a ground image by matching it to a geo-tagged aerial image in a database. Recent works achieve outstanding progress on CVGL benchmarks. However, existing methods still suffer from poor performance in cross-area evaluation, in which the training and testing data are captured from completely distinct areas. We attribute this deficiency to the lack of ability to extract the geometric layout of visual features and models' overfitting to low-level details. Our preliminary work (Zhang et al. 2022) introduced a Geometric Layout Extractor (GLE) to capture the geometric layout from input features. However, the previous GLE does not fully exploit information in the input feature. In this work, we propose GeoDTR+ with an enhanced GLE module that better models the correlations among visual features. To fully explore the LS techniques from our preliminary work, we further propose Contrastive Hard Samples Generation (CHSG) to facilitate model training. Extensive experiments show that GeoDTR+ achieves state-of-the-art (SOTA) results in cross-area evaluation on CVUSA (Workman et al. 2015), CVACT (Liu and Li, 2019), and VIGOR (Zhu et al. 2021) by a large margin (16.44%, 22.71%, and 13.66% without polar transformation) while keeping the same-area performance comparable to existing SOTA. Moreover, we provide detailed analyses of GeoDTR+.</description><identifier>ISSN: 0162-8828</identifier><identifier>ISSN: 1939-3539</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2024.3443652</identifier><identifier>PMID: 39141472</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Correlation ; cross-view geolocalization ; Data mining ; Feature extraction ; image retrieval ; Layout ; metric learning ; Training ; Transformers ; Visual geolocalization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2024-12, Vol.46 (12), p.10419-10433</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1642-4d6f273991f9c4adfd9c4de983c9d574b65a2d508e24ff1f7da15ed396869b533</cites><orcidid>0000-0002-9322-0728 ; 0000-0001-5051-7719 ; 0000-0001-6344-9604 ; 0000-0002-0043-316X ; 0000-0003-3957-7061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10636837$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10636837$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39141472$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiaohan</creatorcontrib><creatorcontrib>Li, Xingyu</creatorcontrib><creatorcontrib>Sultani, Waqas</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Wshah, Safwan</creatorcontrib><title>GeoDTR+: Toward Generic Cross-View Geolocalization via Geometric Disentanglement</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Cross-View Geo-Localization (CVGL) estimates the location of a ground image by matching it to a geo-tagged aerial image in a database. Recent works achieve outstanding progress on CVGL benchmarks. However, existing methods still suffer from poor performance in cross-area evaluation, in which the training and testing data are captured from completely distinct areas. We attribute this deficiency to the lack of ability to extract the geometric layout of visual features and models' overfitting to low-level details. Our preliminary work (Zhang et al. 2022) introduced a Geometric Layout Extractor (GLE) to capture the geometric layout from input features. However, the previous GLE does not fully exploit information in the input feature. In this work, we propose GeoDTR+ with an enhanced GLE module that better models the correlations among visual features. To fully explore the LS techniques from our preliminary work, we further propose Contrastive Hard Samples Generation (CHSG) to facilitate model training. Extensive experiments show that GeoDTR+ achieves state-of-the-art (SOTA) results in cross-area evaluation on CVUSA (Workman et al. 2015), CVACT (Liu and Li, 2019), and VIGOR (Zhu et al. 2021) by a large margin (16.44%, 22.71%, and 13.66% without polar transformation) while keeping the same-area performance comparable to existing SOTA. Moreover, we provide detailed analyses of GeoDTR+.</description><subject>Accuracy</subject><subject>Correlation</subject><subject>cross-view geolocalization</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>image retrieval</subject><subject>Layout</subject><subject>metric learning</subject><subject>Training</subject><subject>Transformers</subject><subject>Visual geolocalization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMobk7_gIjsUpDOJCdNG-_GplOYOKR6W7LmRCL9mE3n0F9v66Z4dQ6H533hPIScMjpijKqrZDF-uB9xysUIhAAZ8j3SZwpUACGofdKnTPIgjnncI0fev1HKREjhkPRAMcFExPtkMcNqmjxdXg-TaqNrM5xhibXLhpO68j54cbhpT1VeZTp3X7pxVTn8cLq7Fdh04NR5LBtdvuZYtMsxObA693iymwPyfHuTTO6C-ePsfjKeBxmTggfCSMsjUIpZlQltrGmHQRVDpkwYiaUMNTchjZELa5mNjGYhGlAylmoZAgzIxbZ3VVfva_RNWjifYZ7rEqu1T4EqYBFt6RblWzTrfqrRpqvaFbr-TBlNO5Ppj8m0M5nuTLah813_elmg-Yv8qmuBsy3gEPFfowQZQwTfm0J3cA</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Zhang, Xiaohan</creator><creator>Li, Xingyu</creator><creator>Sultani, Waqas</creator><creator>Chen, Chen</creator><creator>Wshah, Safwan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9322-0728</orcidid><orcidid>https://orcid.org/0000-0001-5051-7719</orcidid><orcidid>https://orcid.org/0000-0001-6344-9604</orcidid><orcidid>https://orcid.org/0000-0002-0043-316X</orcidid><orcidid>https://orcid.org/0000-0003-3957-7061</orcidid></search><sort><creationdate>202412</creationdate><title>GeoDTR+: Toward Generic Cross-View Geolocalization via Geometric Disentanglement</title><author>Zhang, Xiaohan ; Li, Xingyu ; Sultani, Waqas ; Chen, Chen ; Wshah, Safwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1642-4d6f273991f9c4adfd9c4de983c9d574b65a2d508e24ff1f7da15ed396869b533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Correlation</topic><topic>cross-view geolocalization</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>image retrieval</topic><topic>Layout</topic><topic>metric learning</topic><topic>Training</topic><topic>Transformers</topic><topic>Visual geolocalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaohan</creatorcontrib><creatorcontrib>Li, Xingyu</creatorcontrib><creatorcontrib>Sultani, Waqas</creatorcontrib><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Wshah, Safwan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiaohan</au><au>Li, Xingyu</au><au>Sultani, Waqas</au><au>Chen, Chen</au><au>Wshah, Safwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GeoDTR+: Toward Generic Cross-View Geolocalization via Geometric Disentanglement</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2024-12</date><risdate>2024</risdate><volume>46</volume><issue>12</issue><spage>10419</spage><epage>10433</epage><pages>10419-10433</pages><issn>0162-8828</issn><issn>1939-3539</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Cross-View Geo-Localization (CVGL) estimates the location of a ground image by matching it to a geo-tagged aerial image in a database. Recent works achieve outstanding progress on CVGL benchmarks. However, existing methods still suffer from poor performance in cross-area evaluation, in which the training and testing data are captured from completely distinct areas. We attribute this deficiency to the lack of ability to extract the geometric layout of visual features and models' overfitting to low-level details. Our preliminary work (Zhang et al. 2022) introduced a Geometric Layout Extractor (GLE) to capture the geometric layout from input features. However, the previous GLE does not fully exploit information in the input feature. In this work, we propose GeoDTR+ with an enhanced GLE module that better models the correlations among visual features. To fully explore the LS techniques from our preliminary work, we further propose Contrastive Hard Samples Generation (CHSG) to facilitate model training. Extensive experiments show that GeoDTR+ achieves state-of-the-art (SOTA) results in cross-area evaluation on CVUSA (Workman et al. 2015), CVACT (Liu and Li, 2019), and VIGOR (Zhu et al. 2021) by a large margin (16.44%, 22.71%, and 13.66% without polar transformation) while keeping the same-area performance comparable to existing SOTA. Moreover, we provide detailed analyses of GeoDTR+.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39141472</pmid><doi>10.1109/TPAMI.2024.3443652</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9322-0728</orcidid><orcidid>https://orcid.org/0000-0001-5051-7719</orcidid><orcidid>https://orcid.org/0000-0001-6344-9604</orcidid><orcidid>https://orcid.org/0000-0002-0043-316X</orcidid><orcidid>https://orcid.org/0000-0003-3957-7061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2024-12, Vol.46 (12), p.10419-10433
issn 0162-8828
1939-3539
1939-3539
2160-9292
language eng
recordid cdi_ieee_primary_10636837
source IEEE Electronic Library (IEL)
subjects Accuracy
Correlation
cross-view geolocalization
Data mining
Feature extraction
image retrieval
Layout
metric learning
Training
Transformers
Visual geolocalization
title GeoDTR+: Toward Generic Cross-View Geolocalization via Geometric Disentanglement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GeoDTR+:%20Toward%20Generic%20Cross-View%20Geolocalization%20via%20Geometric%20Disentanglement&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Zhang,%20Xiaohan&rft.date=2024-12&rft.volume=46&rft.issue=12&rft.spage=10419&rft.epage=10433&rft.pages=10419-10433&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2024.3443652&rft_dat=%3Cproquest_RIE%3E3093170869%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3093170869&rft_id=info:pmid/39141472&rft_ieee_id=10636837&rfr_iscdi=true