Excellent Endurance (> 1013) of Charge Trap Memory Based on HxWO3 Charge Trap Layer With Shallow Trap Level Using Hydrogen Spillover

In this study, we present an IGZO-based volatile charge trap memory, employing a hydrogenated WO 3 (H x WO _{{3}}\text {)} charge trap layer (CTL) with shallow traps. To overcome the interfacial issues in conventional Si-based transistors, we utilized the IGZO transistor to facilitate fast charge t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE electron device letters 2024-10, Vol.45 (10), p.1804-1807
Hauptverfasser: Han, Geonhui, Kim, Jaeseon, Kim, Youngdong, Seo, Jongseon, Lee, Donghwa, Hwang, Hyunsang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1807
container_issue 10
container_start_page 1804
container_title IEEE electron device letters
container_volume 45
creator Han, Geonhui
Kim, Jaeseon
Kim, Youngdong
Seo, Jongseon
Lee, Donghwa
Hwang, Hyunsang
description In this study, we present an IGZO-based volatile charge trap memory, employing a hydrogenated WO 3 (H x WO _{{3}}\text {)} charge trap layer (CTL) with shallow traps. To overcome the interfacial issues in conventional Si-based transistors, we utilized the IGZO transistor to facilitate fast charge trapping / de-trapping within the CTL without barrier. Furthermore, through the hydrogen spillover with chemical reaction, we engineered the trap level and density in WO x based CTL to achieve the shallow trap levels. Consequently, for the shallow trap level, high hydrogen concentration (>10%) was realized in the CTL owing to low activation energy with hydrogen spillover. In addition, both experimental results and Density Functional Theory simulations confirmed that hydrogen interstitial defects (H _{\text {i}}\text {)} could serve as shallow traps (
doi_str_mv 10.1109/LED.2024.3443087
format Article
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_10634566</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10634566</ieee_id><sourcerecordid>10634566</sourcerecordid><originalsourceid>FETCH-LOGICAL-i106t-31b6e63aa5d7adff073f22843d7a486854ea9255b582e3c504e7d39e6365e7633</originalsourceid><addsrcrecordid>eNpVjs1Pg0AUxPegibV69-DhHfUA7vL2g15MtKI1wfTQNj02W3hQDAWyYC13_3BJ7MXTZCa_mQxjN4L7QvDJQxy9-AEPpI9SIg_NGRtxI4WHgusLdtm2n5wLKY0csZ_omFBZUtVBVKVfzlYJwd0jCC7wHuoMpjvrcoKlsw180L52PTzbllKoK5gd13P8R8S2JwfrotvBYmfLsv4-5XSgElZtUeUw61NX51TBoikG4kDuip1ntmzp-qRjtnqNltOZF8_f3qdPsVcMx7vh_laTRmtVamyaZdxgFgShxMHKUIdKkp0ESm1VGBAmiksyKU6GilZkNOKY3f7tFkS0aVyxt67fDNsoldb4C4fZW8Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Excellent Endurance (&gt; 1013) of Charge Trap Memory Based on HxWO3 Charge Trap Layer With Shallow Trap Level Using Hydrogen Spillover</title><source>IEEE Electronic Library (IEL)</source><creator>Han, Geonhui ; Kim, Jaeseon ; Kim, Youngdong ; Seo, Jongseon ; Lee, Donghwa ; Hwang, Hyunsang</creator><creatorcontrib>Han, Geonhui ; Kim, Jaeseon ; Kim, Youngdong ; Seo, Jongseon ; Lee, Donghwa ; Hwang, Hyunsang</creatorcontrib><description><![CDATA[In this study, we present an IGZO-based volatile charge trap memory, employing a hydrogenated WO 3 (H x WO<inline-formula> <tex-math notation="LaTeX">_{{3}}\text {)} </tex-math></inline-formula> charge trap layer (CTL) with shallow traps. To overcome the interfacial issues in conventional Si-based transistors, we utilized the IGZO transistor to facilitate fast charge trapping / de-trapping within the CTL without barrier. Furthermore, through the hydrogen spillover with chemical reaction, we engineered the trap level and density in WO x based CTL to achieve the shallow trap levels. Consequently, for the shallow trap level, high hydrogen concentration (>10%) was realized in the CTL owing to low activation energy with hydrogen spillover. In addition, both experimental results and Density Functional Theory simulations confirmed that hydrogen interstitial defects (H<inline-formula> <tex-math notation="LaTeX">_{\text {i}}\text {)} </tex-math></inline-formula> could serve as shallow traps (<0.1 eV) in the H x WO 3 CTL when the hydrogen concentration exceeded 10% in the WO 3 bulk. Finally, the synergy effect between the IGZO transistor and H<inline-formula> <tex-math notation="LaTeX">_{{0}.{18}} </tex-math></inline-formula> WO 3 CTL enabled low voltage operation (<2 V), fast switching speed (<10 ns), highly stable endurance (<inline-formula> <tex-math notation="LaTeX">\gt 10^{{13}} </tex-math></inline-formula> cycles), large sensing margin (>3 V), multi-bit operation (3 bit), and excellent retention (<inline-formula> <tex-math notation="LaTeX">\sim ~20 </tex-math></inline-formula> s).]]></description><identifier>ISSN: 0741-3106</identifier><identifier>DOI: 10.1109/LED.2024.3443087</identifier><identifier>CODEN: EDLEDZ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Annealing ; Capacitorless DRAM ; charge trap memory ; Electron traps ; Electrons ; Hydrogen ; Random access memory ; Sensors ; spillover method ; Transistors ; trap level ; volatile memory</subject><ispartof>IEEE electron device letters, 2024-10, Vol.45 (10), p.1804-1807</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8956-3648 ; 0000-0002-5135-9350 ; 0000-0003-1930-1914 ; 0009-0002-0699-9241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10634566$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10634566$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Geonhui</creatorcontrib><creatorcontrib>Kim, Jaeseon</creatorcontrib><creatorcontrib>Kim, Youngdong</creatorcontrib><creatorcontrib>Seo, Jongseon</creatorcontrib><creatorcontrib>Lee, Donghwa</creatorcontrib><creatorcontrib>Hwang, Hyunsang</creatorcontrib><title>Excellent Endurance (&gt; 1013) of Charge Trap Memory Based on HxWO3 Charge Trap Layer With Shallow Trap Level Using Hydrogen Spillover</title><title>IEEE electron device letters</title><addtitle>LED</addtitle><description><![CDATA[In this study, we present an IGZO-based volatile charge trap memory, employing a hydrogenated WO 3 (H x WO<inline-formula> <tex-math notation="LaTeX">_{{3}}\text {)} </tex-math></inline-formula> charge trap layer (CTL) with shallow traps. To overcome the interfacial issues in conventional Si-based transistors, we utilized the IGZO transistor to facilitate fast charge trapping / de-trapping within the CTL without barrier. Furthermore, through the hydrogen spillover with chemical reaction, we engineered the trap level and density in WO x based CTL to achieve the shallow trap levels. Consequently, for the shallow trap level, high hydrogen concentration (>10%) was realized in the CTL owing to low activation energy with hydrogen spillover. In addition, both experimental results and Density Functional Theory simulations confirmed that hydrogen interstitial defects (H<inline-formula> <tex-math notation="LaTeX">_{\text {i}}\text {)} </tex-math></inline-formula> could serve as shallow traps (<0.1 eV) in the H x WO 3 CTL when the hydrogen concentration exceeded 10% in the WO 3 bulk. Finally, the synergy effect between the IGZO transistor and H<inline-formula> <tex-math notation="LaTeX">_{{0}.{18}} </tex-math></inline-formula> WO 3 CTL enabled low voltage operation (<2 V), fast switching speed (<10 ns), highly stable endurance (<inline-formula> <tex-math notation="LaTeX">\gt 10^{{13}} </tex-math></inline-formula> cycles), large sensing margin (>3 V), multi-bit operation (3 bit), and excellent retention (<inline-formula> <tex-math notation="LaTeX">\sim ~20 </tex-math></inline-formula> s).]]></description><subject>Annealing</subject><subject>Capacitorless DRAM</subject><subject>charge trap memory</subject><subject>Electron traps</subject><subject>Electrons</subject><subject>Hydrogen</subject><subject>Random access memory</subject><subject>Sensors</subject><subject>spillover method</subject><subject>Transistors</subject><subject>trap level</subject><subject>volatile memory</subject><issn>0741-3106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVjs1Pg0AUxPegibV69-DhHfUA7vL2g15MtKI1wfTQNj02W3hQDAWyYC13_3BJ7MXTZCa_mQxjN4L7QvDJQxy9-AEPpI9SIg_NGRtxI4WHgusLdtm2n5wLKY0csZ_omFBZUtVBVKVfzlYJwd0jCC7wHuoMpjvrcoKlsw180L52PTzbllKoK5gd13P8R8S2JwfrotvBYmfLsv4-5XSgElZtUeUw61NX51TBoikG4kDuip1ntmzp-qRjtnqNltOZF8_f3qdPsVcMx7vh_laTRmtVamyaZdxgFgShxMHKUIdKkp0ESm1VGBAmiksyKU6GilZkNOKY3f7tFkS0aVyxt67fDNsoldb4C4fZW8Q</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Han, Geonhui</creator><creator>Kim, Jaeseon</creator><creator>Kim, Youngdong</creator><creator>Seo, Jongseon</creator><creator>Lee, Donghwa</creator><creator>Hwang, Hyunsang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-8956-3648</orcidid><orcidid>https://orcid.org/0000-0002-5135-9350</orcidid><orcidid>https://orcid.org/0000-0003-1930-1914</orcidid><orcidid>https://orcid.org/0009-0002-0699-9241</orcidid></search><sort><creationdate>202410</creationdate><title>Excellent Endurance (&gt; 1013) of Charge Trap Memory Based on HxWO3 Charge Trap Layer With Shallow Trap Level Using Hydrogen Spillover</title><author>Han, Geonhui ; Kim, Jaeseon ; Kim, Youngdong ; Seo, Jongseon ; Lee, Donghwa ; Hwang, Hyunsang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i106t-31b6e63aa5d7adff073f22843d7a486854ea9255b582e3c504e7d39e6365e7633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Annealing</topic><topic>Capacitorless DRAM</topic><topic>charge trap memory</topic><topic>Electron traps</topic><topic>Electrons</topic><topic>Hydrogen</topic><topic>Random access memory</topic><topic>Sensors</topic><topic>spillover method</topic><topic>Transistors</topic><topic>trap level</topic><topic>volatile memory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Geonhui</creatorcontrib><creatorcontrib>Kim, Jaeseon</creatorcontrib><creatorcontrib>Kim, Youngdong</creatorcontrib><creatorcontrib>Seo, Jongseon</creatorcontrib><creatorcontrib>Lee, Donghwa</creatorcontrib><creatorcontrib>Hwang, Hyunsang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE electron device letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Geonhui</au><au>Kim, Jaeseon</au><au>Kim, Youngdong</au><au>Seo, Jongseon</au><au>Lee, Donghwa</au><au>Hwang, Hyunsang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Excellent Endurance (&gt; 1013) of Charge Trap Memory Based on HxWO3 Charge Trap Layer With Shallow Trap Level Using Hydrogen Spillover</atitle><jtitle>IEEE electron device letters</jtitle><stitle>LED</stitle><date>2024-10</date><risdate>2024</risdate><volume>45</volume><issue>10</issue><spage>1804</spage><epage>1807</epage><pages>1804-1807</pages><issn>0741-3106</issn><coden>EDLEDZ</coden><abstract><![CDATA[In this study, we present an IGZO-based volatile charge trap memory, employing a hydrogenated WO 3 (H x WO<inline-formula> <tex-math notation="LaTeX">_{{3}}\text {)} </tex-math></inline-formula> charge trap layer (CTL) with shallow traps. To overcome the interfacial issues in conventional Si-based transistors, we utilized the IGZO transistor to facilitate fast charge trapping / de-trapping within the CTL without barrier. Furthermore, through the hydrogen spillover with chemical reaction, we engineered the trap level and density in WO x based CTL to achieve the shallow trap levels. Consequently, for the shallow trap level, high hydrogen concentration (>10%) was realized in the CTL owing to low activation energy with hydrogen spillover. In addition, both experimental results and Density Functional Theory simulations confirmed that hydrogen interstitial defects (H<inline-formula> <tex-math notation="LaTeX">_{\text {i}}\text {)} </tex-math></inline-formula> could serve as shallow traps (<0.1 eV) in the H x WO 3 CTL when the hydrogen concentration exceeded 10% in the WO 3 bulk. Finally, the synergy effect between the IGZO transistor and H<inline-formula> <tex-math notation="LaTeX">_{{0}.{18}} </tex-math></inline-formula> WO 3 CTL enabled low voltage operation (<2 V), fast switching speed (<10 ns), highly stable endurance (<inline-formula> <tex-math notation="LaTeX">\gt 10^{{13}} </tex-math></inline-formula> cycles), large sensing margin (>3 V), multi-bit operation (3 bit), and excellent retention (<inline-formula> <tex-math notation="LaTeX">\sim ~20 </tex-math></inline-formula> s).]]></abstract><pub>IEEE</pub><doi>10.1109/LED.2024.3443087</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8956-3648</orcidid><orcidid>https://orcid.org/0000-0002-5135-9350</orcidid><orcidid>https://orcid.org/0000-0003-1930-1914</orcidid><orcidid>https://orcid.org/0009-0002-0699-9241</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0741-3106
ispartof IEEE electron device letters, 2024-10, Vol.45 (10), p.1804-1807
issn 0741-3106
language eng
recordid cdi_ieee_primary_10634566
source IEEE Electronic Library (IEL)
subjects Annealing
Capacitorless DRAM
charge trap memory
Electron traps
Electrons
Hydrogen
Random access memory
Sensors
spillover method
Transistors
trap level
volatile memory
title Excellent Endurance (> 1013) of Charge Trap Memory Based on HxWO3 Charge Trap Layer With Shallow Trap Level Using Hydrogen Spillover
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A01%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Excellent%20Endurance%20(%3E%201013)%20of%20Charge%20Trap%20Memory%20Based%20on%20HxWO3%20Charge%20Trap%20Layer%20With%20Shallow%20Trap%20Level%20Using%20Hydrogen%20Spillover&rft.jtitle=IEEE%20electron%20device%20letters&rft.au=Han,%20Geonhui&rft.date=2024-10&rft.volume=45&rft.issue=10&rft.spage=1804&rft.epage=1807&rft.pages=1804-1807&rft.issn=0741-3106&rft.coden=EDLEDZ&rft_id=info:doi/10.1109/LED.2024.3443087&rft_dat=%3Cieee_RIE%3E10634566%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10634566&rfr_iscdi=true