DiffMAR: A Generalized Diffusion Model for Metal Artifact Reduction in CT Images

X-ray imaging frequently introduces varying degrees of metal artifacts to computed tomography (CT) images when metal implants are present. For the metal artifact reduction (MAR) task, existing end-to-end methods often exhibit limited generalization capabilities. While methods based on multiple itera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2024-11, Vol.28 (11), p.6712-6724
Hauptverfasser: Cai, Tianxiao, Li, Xiang, Zhong, Chenglan, Tang, Wei, Guo, Jixiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6724
container_issue 11
container_start_page 6712
container_title IEEE journal of biomedical and health informatics
container_volume 28
creator Cai, Tianxiao
Li, Xiang
Zhong, Chenglan
Tang, Wei
Guo, Jixiang
description X-ray imaging frequently introduces varying degrees of metal artifacts to computed tomography (CT) images when metal implants are present. For the metal artifact reduction (MAR) task, existing end-to-end methods often exhibit limited generalization capabilities. While methods based on multiple iterations often suffer from accumulative error, resulting in lower-quality restoration outcomes. In this work, we innovatively present a generalized diffusion model for Metal Artifact Reduction (DiffMAR). The proposed method utilizes a linear degradation process to simulate the physical phenomenon of metal artifact formation in CT images and directly learn an iterative restoration process from paired CT images in the reverse process. During the reverse process of DiffMAR, a Time-Latent Adjustment (TLA) module is designed to adjust time embedding at the latent level, thereby minimizing the accumulative error during iterative restoration. We also designed a structure information extraction (SIE) module to utilize linear interpolation data in the image domain, guiding the generation of anatomical structures during the iterative restoring. This leads to more accurate and robust shadow-free image generation. Comprehensive analysis, including both synthesized data and clinical evidence, confirms that our proposed method surpasses the current state-of-the-art (SOTA) MAR methods in terms of both image generation quality and generalization.
doi_str_mv 10.1109/JBHI.2024.3439729
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10629037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10629037</ieee_id><sourcerecordid>3090631975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1197-828e38414386c851ff1ffb7d4ba54a03ae3d1a99f9b4e36513cea8162a7e4a993</originalsourceid><addsrcrecordid>eNpNkFtLwzAYhoMoTuZ-gCCSS286c2qbeFenbpMNZczrkLZfpNLDbNoL_fWmbBNDIOHl-d6EB6ErSqaUEnX38rBYThlhYsoFVzFTJ-iC0UgGjBF5erxTJUZo4twn8Uv6SEXnaMSVrwjD-AK9PRbWrpPNPU7wHGpoTVn8QI6HuHdFU-N1k0OJbdPiNXSmxEnbFdZkHd5A3mfdgBQ1nm3xsjIf4C7RmTWlg8nhHKP356ftbBGsXufLWbIKMkpVHEgmgUtBBZdRJkNqrd9pnIvUhMIQboDn1ChlVSqARyHlGRj_f2ZiED7nY3S77921zVcPrtNV4TIoS1ND0zvNiSIR90-FHqV7NGsb51qwetcWlWm_NSV6cKkHl3pwqQ8u_czNob5PK8j_Jo7mPHC9BwoA-FcYMUV4zH8ByQ11rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090631975</pqid></control><display><type>article</type><title>DiffMAR: A Generalized Diffusion Model for Metal Artifact Reduction in CT Images</title><source>IEEE Electronic Library (IEL)</source><creator>Cai, Tianxiao ; Li, Xiang ; Zhong, Chenglan ; Tang, Wei ; Guo, Jixiang</creator><creatorcontrib>Cai, Tianxiao ; Li, Xiang ; Zhong, Chenglan ; Tang, Wei ; Guo, Jixiang</creatorcontrib><description>X-ray imaging frequently introduces varying degrees of metal artifacts to computed tomography (CT) images when metal implants are present. For the metal artifact reduction (MAR) task, existing end-to-end methods often exhibit limited generalization capabilities. While methods based on multiple iterations often suffer from accumulative error, resulting in lower-quality restoration outcomes. In this work, we innovatively present a generalized diffusion model for Metal Artifact Reduction (DiffMAR). The proposed method utilizes a linear degradation process to simulate the physical phenomenon of metal artifact formation in CT images and directly learn an iterative restoration process from paired CT images in the reverse process. During the reverse process of DiffMAR, a Time-Latent Adjustment (TLA) module is designed to adjust time embedding at the latent level, thereby minimizing the accumulative error during iterative restoration. We also designed a structure information extraction (SIE) module to utilize linear interpolation data in the image domain, guiding the generation of anatomical structures during the iterative restoring. This leads to more accurate and robust shadow-free image generation. Comprehensive analysis, including both synthesized data and clinical evidence, confirms that our proposed method surpasses the current state-of-the-art (SOTA) MAR methods in terms of both image generation quality and generalization.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3439729</identifier><identifier>PMID: 39110557</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Computed tomography ; CT metal artifact reduction ; diffusion model ; Diffusion models ; generalization ability ; Humans ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Image restoration ; Mars ; Metals ; Metals - chemistry ; Prostheses and Implants ; Task analysis ; Tomography, X-Ray Computed - methods</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-11, Vol.28 (11), p.6712-6724</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1197-828e38414386c851ff1ffb7d4ba54a03ae3d1a99f9b4e36513cea8162a7e4a993</cites><orcidid>0009-0001-4159-4760 ; 0000-0002-1678-8205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10629037$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10629037$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39110557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Tianxiao</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Zhong, Chenglan</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Guo, Jixiang</creatorcontrib><title>DiffMAR: A Generalized Diffusion Model for Metal Artifact Reduction in CT Images</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>X-ray imaging frequently introduces varying degrees of metal artifacts to computed tomography (CT) images when metal implants are present. For the metal artifact reduction (MAR) task, existing end-to-end methods often exhibit limited generalization capabilities. While methods based on multiple iterations often suffer from accumulative error, resulting in lower-quality restoration outcomes. In this work, we innovatively present a generalized diffusion model for Metal Artifact Reduction (DiffMAR). The proposed method utilizes a linear degradation process to simulate the physical phenomenon of metal artifact formation in CT images and directly learn an iterative restoration process from paired CT images in the reverse process. During the reverse process of DiffMAR, a Time-Latent Adjustment (TLA) module is designed to adjust time embedding at the latent level, thereby minimizing the accumulative error during iterative restoration. We also designed a structure information extraction (SIE) module to utilize linear interpolation data in the image domain, guiding the generation of anatomical structures during the iterative restoring. This leads to more accurate and robust shadow-free image generation. Comprehensive analysis, including both synthesized data and clinical evidence, confirms that our proposed method surpasses the current state-of-the-art (SOTA) MAR methods in terms of both image generation quality and generalization.</description><subject>Algorithms</subject><subject>Computed tomography</subject><subject>CT metal artifact reduction</subject><subject>diffusion model</subject><subject>Diffusion models</subject><subject>generalization ability</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Mars</subject><subject>Metals</subject><subject>Metals - chemistry</subject><subject>Prostheses and Implants</subject><subject>Task analysis</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkFtLwzAYhoMoTuZ-gCCSS286c2qbeFenbpMNZczrkLZfpNLDbNoL_fWmbBNDIOHl-d6EB6ErSqaUEnX38rBYThlhYsoFVzFTJ-iC0UgGjBF5erxTJUZo4twn8Uv6SEXnaMSVrwjD-AK9PRbWrpPNPU7wHGpoTVn8QI6HuHdFU-N1k0OJbdPiNXSmxEnbFdZkHd5A3mfdgBQ1nm3xsjIf4C7RmTWlg8nhHKP356ftbBGsXufLWbIKMkpVHEgmgUtBBZdRJkNqrd9pnIvUhMIQboDn1ChlVSqARyHlGRj_f2ZiED7nY3S77921zVcPrtNV4TIoS1ND0zvNiSIR90-FHqV7NGsb51qwetcWlWm_NSV6cKkHl3pwqQ8u_czNob5PK8j_Jo7mPHC9BwoA-FcYMUV4zH8ByQ11rw</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Cai, Tianxiao</creator><creator>Li, Xiang</creator><creator>Zhong, Chenglan</creator><creator>Tang, Wei</creator><creator>Guo, Jixiang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0001-4159-4760</orcidid><orcidid>https://orcid.org/0000-0002-1678-8205</orcidid></search><sort><creationdate>202411</creationdate><title>DiffMAR: A Generalized Diffusion Model for Metal Artifact Reduction in CT Images</title><author>Cai, Tianxiao ; Li, Xiang ; Zhong, Chenglan ; Tang, Wei ; Guo, Jixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1197-828e38414386c851ff1ffb7d4ba54a03ae3d1a99f9b4e36513cea8162a7e4a993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computed tomography</topic><topic>CT metal artifact reduction</topic><topic>diffusion model</topic><topic>Diffusion models</topic><topic>generalization ability</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Mars</topic><topic>Metals</topic><topic>Metals - chemistry</topic><topic>Prostheses and Implants</topic><topic>Task analysis</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Tianxiao</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Zhong, Chenglan</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Guo, Jixiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cai, Tianxiao</au><au>Li, Xiang</au><au>Zhong, Chenglan</au><au>Tang, Wei</au><au>Guo, Jixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DiffMAR: A Generalized Diffusion Model for Metal Artifact Reduction in CT Images</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-11</date><risdate>2024</risdate><volume>28</volume><issue>11</issue><spage>6712</spage><epage>6724</epage><pages>6712-6724</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>X-ray imaging frequently introduces varying degrees of metal artifacts to computed tomography (CT) images when metal implants are present. For the metal artifact reduction (MAR) task, existing end-to-end methods often exhibit limited generalization capabilities. While methods based on multiple iterations often suffer from accumulative error, resulting in lower-quality restoration outcomes. In this work, we innovatively present a generalized diffusion model for Metal Artifact Reduction (DiffMAR). The proposed method utilizes a linear degradation process to simulate the physical phenomenon of metal artifact formation in CT images and directly learn an iterative restoration process from paired CT images in the reverse process. During the reverse process of DiffMAR, a Time-Latent Adjustment (TLA) module is designed to adjust time embedding at the latent level, thereby minimizing the accumulative error during iterative restoration. We also designed a structure information extraction (SIE) module to utilize linear interpolation data in the image domain, guiding the generation of anatomical structures during the iterative restoring. This leads to more accurate and robust shadow-free image generation. Comprehensive analysis, including both synthesized data and clinical evidence, confirms that our proposed method surpasses the current state-of-the-art (SOTA) MAR methods in terms of both image generation quality and generalization.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39110557</pmid><doi>10.1109/JBHI.2024.3439729</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0001-4159-4760</orcidid><orcidid>https://orcid.org/0000-0002-1678-8205</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2024-11, Vol.28 (11), p.6712-6724
issn 2168-2194
2168-2208
2168-2208
language eng
recordid cdi_ieee_primary_10629037
source IEEE Electronic Library (IEL)
subjects Algorithms
Computed tomography
CT metal artifact reduction
diffusion model
Diffusion models
generalization ability
Humans
Image Processing, Computer-Assisted - methods
Image reconstruction
Image restoration
Mars
Metals
Metals - chemistry
Prostheses and Implants
Task analysis
Tomography, X-Ray Computed - methods
title DiffMAR: A Generalized Diffusion Model for Metal Artifact Reduction in CT Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DiffMAR:%20A%20Generalized%20Diffusion%20Model%20for%20Metal%20Artifact%20Reduction%20in%20CT%20Images&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Cai,%20Tianxiao&rft.date=2024-11&rft.volume=28&rft.issue=11&rft.spage=6712&rft.epage=6724&rft.pages=6712-6724&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3439729&rft_dat=%3Cproquest_RIE%3E3090631975%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090631975&rft_id=info:pmid/39110557&rft_ieee_id=10629037&rfr_iscdi=true