DiffMAR: A Generalized Diffusion Model for Metal Artifact Reduction in CT Images
X-ray imaging frequently introduces varying degrees of metal artifacts to computed tomography (CT) images when metal implants are present. For the metal artifact reduction (MAR) task, existing end-to-end methods often exhibit limited generalization capabilities. While methods based on multiple itera...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2024-11, Vol.28 (11), p.6712-6724 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6724 |
---|---|
container_issue | 11 |
container_start_page | 6712 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | 28 |
creator | Cai, Tianxiao Li, Xiang Zhong, Chenglan Tang, Wei Guo, Jixiang |
description | X-ray imaging frequently introduces varying degrees of metal artifacts to computed tomography (CT) images when metal implants are present. For the metal artifact reduction (MAR) task, existing end-to-end methods often exhibit limited generalization capabilities. While methods based on multiple iterations often suffer from accumulative error, resulting in lower-quality restoration outcomes. In this work, we innovatively present a generalized diffusion model for Metal Artifact Reduction (DiffMAR). The proposed method utilizes a linear degradation process to simulate the physical phenomenon of metal artifact formation in CT images and directly learn an iterative restoration process from paired CT images in the reverse process. During the reverse process of DiffMAR, a Time-Latent Adjustment (TLA) module is designed to adjust time embedding at the latent level, thereby minimizing the accumulative error during iterative restoration. We also designed a structure information extraction (SIE) module to utilize linear interpolation data in the image domain, guiding the generation of anatomical structures during the iterative restoring. This leads to more accurate and robust shadow-free image generation. Comprehensive analysis, including both synthesized data and clinical evidence, confirms that our proposed method surpasses the current state-of-the-art (SOTA) MAR methods in terms of both image generation quality and generalization. |
doi_str_mv | 10.1109/JBHI.2024.3439729 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10629037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10629037</ieee_id><sourcerecordid>3090631975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1197-828e38414386c851ff1ffb7d4ba54a03ae3d1a99f9b4e36513cea8162a7e4a993</originalsourceid><addsrcrecordid>eNpNkFtLwzAYhoMoTuZ-gCCSS286c2qbeFenbpMNZczrkLZfpNLDbNoL_fWmbBNDIOHl-d6EB6ErSqaUEnX38rBYThlhYsoFVzFTJ-iC0UgGjBF5erxTJUZo4twn8Uv6SEXnaMSVrwjD-AK9PRbWrpPNPU7wHGpoTVn8QI6HuHdFU-N1k0OJbdPiNXSmxEnbFdZkHd5A3mfdgBQ1nm3xsjIf4C7RmTWlg8nhHKP356ftbBGsXufLWbIKMkpVHEgmgUtBBZdRJkNqrd9pnIvUhMIQboDn1ChlVSqARyHlGRj_f2ZiED7nY3S77921zVcPrtNV4TIoS1ND0zvNiSIR90-FHqV7NGsb51qwetcWlWm_NSV6cKkHl3pwqQ8u_czNob5PK8j_Jo7mPHC9BwoA-FcYMUV4zH8ByQ11rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3090631975</pqid></control><display><type>article</type><title>DiffMAR: A Generalized Diffusion Model for Metal Artifact Reduction in CT Images</title><source>IEEE Electronic Library (IEL)</source><creator>Cai, Tianxiao ; Li, Xiang ; Zhong, Chenglan ; Tang, Wei ; Guo, Jixiang</creator><creatorcontrib>Cai, Tianxiao ; Li, Xiang ; Zhong, Chenglan ; Tang, Wei ; Guo, Jixiang</creatorcontrib><description>X-ray imaging frequently introduces varying degrees of metal artifacts to computed tomography (CT) images when metal implants are present. For the metal artifact reduction (MAR) task, existing end-to-end methods often exhibit limited generalization capabilities. While methods based on multiple iterations often suffer from accumulative error, resulting in lower-quality restoration outcomes. In this work, we innovatively present a generalized diffusion model for Metal Artifact Reduction (DiffMAR). The proposed method utilizes a linear degradation process to simulate the physical phenomenon of metal artifact formation in CT images and directly learn an iterative restoration process from paired CT images in the reverse process. During the reverse process of DiffMAR, a Time-Latent Adjustment (TLA) module is designed to adjust time embedding at the latent level, thereby minimizing the accumulative error during iterative restoration. We also designed a structure information extraction (SIE) module to utilize linear interpolation data in the image domain, guiding the generation of anatomical structures during the iterative restoring. This leads to more accurate and robust shadow-free image generation. Comprehensive analysis, including both synthesized data and clinical evidence, confirms that our proposed method surpasses the current state-of-the-art (SOTA) MAR methods in terms of both image generation quality and generalization.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3439729</identifier><identifier>PMID: 39110557</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Computed tomography ; CT metal artifact reduction ; diffusion model ; Diffusion models ; generalization ability ; Humans ; Image Processing, Computer-Assisted - methods ; Image reconstruction ; Image restoration ; Mars ; Metals ; Metals - chemistry ; Prostheses and Implants ; Task analysis ; Tomography, X-Ray Computed - methods</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-11, Vol.28 (11), p.6712-6724</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1197-828e38414386c851ff1ffb7d4ba54a03ae3d1a99f9b4e36513cea8162a7e4a993</cites><orcidid>0009-0001-4159-4760 ; 0000-0002-1678-8205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10629037$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10629037$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39110557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Tianxiao</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Zhong, Chenglan</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Guo, Jixiang</creatorcontrib><title>DiffMAR: A Generalized Diffusion Model for Metal Artifact Reduction in CT Images</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>X-ray imaging frequently introduces varying degrees of metal artifacts to computed tomography (CT) images when metal implants are present. For the metal artifact reduction (MAR) task, existing end-to-end methods often exhibit limited generalization capabilities. While methods based on multiple iterations often suffer from accumulative error, resulting in lower-quality restoration outcomes. In this work, we innovatively present a generalized diffusion model for Metal Artifact Reduction (DiffMAR). The proposed method utilizes a linear degradation process to simulate the physical phenomenon of metal artifact formation in CT images and directly learn an iterative restoration process from paired CT images in the reverse process. During the reverse process of DiffMAR, a Time-Latent Adjustment (TLA) module is designed to adjust time embedding at the latent level, thereby minimizing the accumulative error during iterative restoration. We also designed a structure information extraction (SIE) module to utilize linear interpolation data in the image domain, guiding the generation of anatomical structures during the iterative restoring. This leads to more accurate and robust shadow-free image generation. Comprehensive analysis, including both synthesized data and clinical evidence, confirms that our proposed method surpasses the current state-of-the-art (SOTA) MAR methods in terms of both image generation quality and generalization.</description><subject>Algorithms</subject><subject>Computed tomography</subject><subject>CT metal artifact reduction</subject><subject>diffusion model</subject><subject>Diffusion models</subject><subject>generalization ability</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Mars</subject><subject>Metals</subject><subject>Metals - chemistry</subject><subject>Prostheses and Implants</subject><subject>Task analysis</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpNkFtLwzAYhoMoTuZ-gCCSS286c2qbeFenbpMNZczrkLZfpNLDbNoL_fWmbBNDIOHl-d6EB6ErSqaUEnX38rBYThlhYsoFVzFTJ-iC0UgGjBF5erxTJUZo4twn8Uv6SEXnaMSVrwjD-AK9PRbWrpPNPU7wHGpoTVn8QI6HuHdFU-N1k0OJbdPiNXSmxEnbFdZkHd5A3mfdgBQ1nm3xsjIf4C7RmTWlg8nhHKP356ftbBGsXufLWbIKMkpVHEgmgUtBBZdRJkNqrd9pnIvUhMIQboDn1ChlVSqARyHlGRj_f2ZiED7nY3S77921zVcPrtNV4TIoS1ND0zvNiSIR90-FHqV7NGsb51qwetcWlWm_NSV6cKkHl3pwqQ8u_czNob5PK8j_Jo7mPHC9BwoA-FcYMUV4zH8ByQ11rw</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Cai, Tianxiao</creator><creator>Li, Xiang</creator><creator>Zhong, Chenglan</creator><creator>Tang, Wei</creator><creator>Guo, Jixiang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0001-4159-4760</orcidid><orcidid>https://orcid.org/0000-0002-1678-8205</orcidid></search><sort><creationdate>202411</creationdate><title>DiffMAR: A Generalized Diffusion Model for Metal Artifact Reduction in CT Images</title><author>Cai, Tianxiao ; Li, Xiang ; Zhong, Chenglan ; Tang, Wei ; Guo, Jixiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1197-828e38414386c851ff1ffb7d4ba54a03ae3d1a99f9b4e36513cea8162a7e4a993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computed tomography</topic><topic>CT metal artifact reduction</topic><topic>diffusion model</topic><topic>Diffusion models</topic><topic>generalization ability</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Mars</topic><topic>Metals</topic><topic>Metals - chemistry</topic><topic>Prostheses and Implants</topic><topic>Task analysis</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Tianxiao</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Zhong, Chenglan</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Guo, Jixiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cai, Tianxiao</au><au>Li, Xiang</au><au>Zhong, Chenglan</au><au>Tang, Wei</au><au>Guo, Jixiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DiffMAR: A Generalized Diffusion Model for Metal Artifact Reduction in CT Images</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-11</date><risdate>2024</risdate><volume>28</volume><issue>11</issue><spage>6712</spage><epage>6724</epage><pages>6712-6724</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>X-ray imaging frequently introduces varying degrees of metal artifacts to computed tomography (CT) images when metal implants are present. For the metal artifact reduction (MAR) task, existing end-to-end methods often exhibit limited generalization capabilities. While methods based on multiple iterations often suffer from accumulative error, resulting in lower-quality restoration outcomes. In this work, we innovatively present a generalized diffusion model for Metal Artifact Reduction (DiffMAR). The proposed method utilizes a linear degradation process to simulate the physical phenomenon of metal artifact formation in CT images and directly learn an iterative restoration process from paired CT images in the reverse process. During the reverse process of DiffMAR, a Time-Latent Adjustment (TLA) module is designed to adjust time embedding at the latent level, thereby minimizing the accumulative error during iterative restoration. We also designed a structure information extraction (SIE) module to utilize linear interpolation data in the image domain, guiding the generation of anatomical structures during the iterative restoring. This leads to more accurate and robust shadow-free image generation. Comprehensive analysis, including both synthesized data and clinical evidence, confirms that our proposed method surpasses the current state-of-the-art (SOTA) MAR methods in terms of both image generation quality and generalization.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39110557</pmid><doi>10.1109/JBHI.2024.3439729</doi><tpages>13</tpages><orcidid>https://orcid.org/0009-0001-4159-4760</orcidid><orcidid>https://orcid.org/0000-0002-1678-8205</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2024-11, Vol.28 (11), p.6712-6724 |
issn | 2168-2194 2168-2208 2168-2208 |
language | eng |
recordid | cdi_ieee_primary_10629037 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computed tomography CT metal artifact reduction diffusion model Diffusion models generalization ability Humans Image Processing, Computer-Assisted - methods Image reconstruction Image restoration Mars Metals Metals - chemistry Prostheses and Implants Task analysis Tomography, X-Ray Computed - methods |
title | DiffMAR: A Generalized Diffusion Model for Metal Artifact Reduction in CT Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DiffMAR:%20A%20Generalized%20Diffusion%20Model%20for%20Metal%20Artifact%20Reduction%20in%20CT%20Images&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Cai,%20Tianxiao&rft.date=2024-11&rft.volume=28&rft.issue=11&rft.spage=6712&rft.epage=6724&rft.pages=6712-6724&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3439729&rft_dat=%3Cproquest_RIE%3E3090631975%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3090631975&rft_id=info:pmid/39110557&rft_ieee_id=10629037&rfr_iscdi=true |