DiffMAR: A Generalized Diffusion Model for Metal Artifact Reduction in CT Images
X-ray imaging frequently introduces varying degrees of metal artifacts to computed tomography (CT) images when metal implants are present. For the metal artifact reduction (MAR) task, existing end-to-end methods often exhibit limited generalization capabilities. While methods based on multiple itera...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2024-11, Vol.28 (11), p.6712-6724 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | X-ray imaging frequently introduces varying degrees of metal artifacts to computed tomography (CT) images when metal implants are present. For the metal artifact reduction (MAR) task, existing end-to-end methods often exhibit limited generalization capabilities. While methods based on multiple iterations often suffer from accumulative error, resulting in lower-quality restoration outcomes. In this work, we innovatively present a generalized diffusion model for Metal Artifact Reduction (DiffMAR). The proposed method utilizes a linear degradation process to simulate the physical phenomenon of metal artifact formation in CT images and directly learn an iterative restoration process from paired CT images in the reverse process. During the reverse process of DiffMAR, a Time-Latent Adjustment (TLA) module is designed to adjust time embedding at the latent level, thereby minimizing the accumulative error during iterative restoration. We also designed a structure information extraction (SIE) module to utilize linear interpolation data in the image domain, guiding the generation of anatomical structures during the iterative restoring. This leads to more accurate and robust shadow-free image generation. Comprehensive analysis, including both synthesized data and clinical evidence, confirms that our proposed method surpasses the current state-of-the-art (SOTA) MAR methods in terms of both image generation quality and generalization. |
---|---|
ISSN: | 2168-2194 2168-2208 2168-2208 |
DOI: | 10.1109/JBHI.2024.3439729 |