Synchronization of Intermittently Coupled Neural Networks With Coupling Delay

In recent years, the synchronization of coupled neural networks (CNNs) has been extensively studied. However, existing results heavily rely on assuming continuous couplings, overlooking the prevalence of intermittent couplings in reality. In this article, we address for the first time the synchroniz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-07, Vol.PP, p.1-13
Hauptverfasser: Zhu, Shuaibing, Sang, Hong, Zhang, Kai, Kong, Fanchao, Lu, Jinhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, the synchronization of coupled neural networks (CNNs) has been extensively studied. However, existing results heavily rely on assuming continuous couplings, overlooking the prevalence of intermittent couplings in reality. In this article, we address for the first time the synchronization challenge posed by intermittently CNNs (ICNNs) with coupling delay. To overcome the difficulties arising from intermittent couplings, we put forward a general piecewise delay differential inequality to characterize the dynamics during both coupled intervals and decoupled intervals. Based on the proposed inequality, we establish delay-independent synchronization criteria (DISCs) for ICNNs, enabling them to tackle general coupling delay. Notably, unlike previous studies, the achievement of synchronization in our approach does not rely on external control. Furthermore, for ICNNs that synchronize only under small delays, we formulate non-linear matrix inequality (LMI)-based delay-dependent synchronization criteria (DDSCs) that are computationally efficient and do not require delay differentiability. Finally, we provide illustrative examples to demonstrate our theoretical results.
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2024.3426672