Enhancing Medical Signal Processing and Diagnosis with AI-Generated Content Techniques

In medical diagnostics, the accurate classification and analysis of biomedical signals play a crucial role, particularly in the diagnosis of neurological disorders such as epilepsy. Electroencephalogram (EEG) signals, which represent the electrical activity of the brain, are fundamental in identifyi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2024-07, Vol.PP, p.1-14
Hauptverfasser: Fang, Lihui, Li, Yangyu, Shao, Meiqi, Yu, Aiwen, Felemban, Bassem F., Aly, Ayman A., Rani, Shalli, Lyu, Xiaohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In medical diagnostics, the accurate classification and analysis of biomedical signals play a crucial role, particularly in the diagnosis of neurological disorders such as epilepsy. Electroencephalogram (EEG) signals, which represent the electrical activity of the brain, are fundamental in identifying epileptic seizures. However, challenges such as data scarcity and imbalance significantly hinder the development of robust diagnostic models. Addressing these challenges, in this paper, we explore enhancing medical signal processing and diagnosis, with a focus on epilepsy classification through EEG signals, by harnessing AI-generated content techniques. We introduce a novel framework that utilizes generative adversarial networks for the generation of synthetic EEG signals to augment existing datasets, thereby mitigating issues of data scarcity and imbalance. Furthermore, we incorporate an attention-based temporal convolutional network model to efficiently process and classify EEG signals by emphasizing salient features crucial for accurate diagnosis. Our comprehensive evaluation, including rigorous ablation studies, is conducted on the widely recognized Bonn Epilepsy Data. The results achieves an accuracy of 98.89% and F1 score of 98.91%. The findings demonstrate substantial improvements in epilepsy classification accuracy, showcasing the potential of AI-generated content in advancing the field of medical signal processing and diagnosis.
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2024.3429560