Enhancing Low-Light Light Field Images With a Deep Compensation Unfolding Network

This paper presents a novel and interpretable end-to-end learning framework, called the deep compensation unfolding network (DCUNet), for restoring light field (LF) images captured under low-light conditions. DCUNet is designed with a multi-stage architecture that mimics the optimization process of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2024, Vol.33, p.4131-4144
Hauptverfasser: Lyu, Xianqiang, Hou, Junhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel and interpretable end-to-end learning framework, called the deep compensation unfolding network (DCUNet), for restoring light field (LF) images captured under low-light conditions. DCUNet is designed with a multi-stage architecture that mimics the optimization process of solving an inverse imaging problem in a data-driven fashion. The framework uses the intermediate enhanced result to estimate the illumination map, which is then employed in the unfolding process to produce a new enhanced result. Additionally, DCUNet includes a content-associated deep compensation module at each optimization stage to suppress noise and illumination map estimation errors. To properly mine and leverage the unique characteristics of LF images, this paper proposes a pseudo-explicit feature interaction module that comprehensively exploits redundant information in LF images. The experimental results on both simulated and real datasets demonstrate the superiority of our DCUNet over state-of-the-art methods, both qualitatively and quantitatively. Moreover, DCUNet preserves the essential geometric structure of enhanced LF images much better. The code is publicly available at https://github.com/lyuxianqiang/LFLL-DCU .
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2024.3420797