Unlocking Circuits for Quantum With Open Source Silicon: A first look at measured open source silicon results at 4 K

On recent years, researchers across diverse disciplines have become increasingly interested in low-temperature electronics, which encompasses electronic engineering, material research, sensing, and computing. Among the myriad applications, notable domains include liquid nitrogen-cooled high-performa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE solid state circuits magazine 2024, Vol.16 (2), p.39-48
Hauptverfasser: Li, Anhang, Zeng, Tuohang, Zhang, Lei, Riem, Joseph, Adam, Gina C., Fleischer, David L., Zaslavsky, Alex, Patterson, William R., Ansell, Tim, Akturk, Akin, Hoskins, Brian, Shrestha, Pragya R., Saligane, Mehdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 2
container_start_page 39
container_title IEEE solid state circuits magazine
container_volume 16
creator Li, Anhang
Zeng, Tuohang
Zhang, Lei
Riem, Joseph
Adam, Gina C.
Fleischer, David L.
Zaslavsky, Alex
Patterson, William R.
Ansell, Tim
Akturk, Akin
Hoskins, Brian
Shrestha, Pragya R.
Saligane, Mehdi
description On recent years, researchers across diverse disciplines have become increasingly interested in low-temperature electronics, which encompasses electronic engineering, material research, sensing, and computing. Among the myriad applications, notable domains include liquid nitrogen-cooled high-performance computing, quantum computing, and deep space exploration [1] . This dynamic landscape has witnessed the culmination of numerous research studies, as evidenced by the rich array of findings outlined in references [2] , [3] , [4] , [5] , and [6] . This field is particularly fascinating due to its multifaceted applications, requiring a comprehensive understanding of knowledge, data, and tools that operate across varying temperature ranges, as detailed in [7] , where the goal is to move the control logic closer to the cryogenic device being tested. This task highlights the significant obstacles that arise when dealing with cryogenic circuitry. As temperatures drop below a certain threshold, the behavior of transistors and passive devices undergoes a significant transformation. Designers must carefully measure and model these devices internally, adjusting circuit scaling based on basic models. This process demands significantly more man-hours compared with conventional circuit design methodologies. The task could be streamlined with the presence of a shared metrology device modeling database among institutions. Such a resource would alleviate the need for redundant efforts and foster efficiency in cryogenic circuit design.
doi_str_mv 10.1109/MSSC.2024.3385734
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10584405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10584405</ieee_id><sourcerecordid>3075422092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c912-137692a142b8db4d30641a2600c8d5ef7ef19e2c81b12ed77ac627b6b8bc27033</originalsourceid><addsrcrecordid>eNpNkE1LxDAURYMoOI7-AMFFwHXHfDatu6H4hSODdMRlSNNUM9NpxiRd-O9tqYir9xbn3vc4AFxitMAY5TcvZVksCCJsQWnGBWVHYIZzRhPEc3T8t2fkFJyFsEUo5YyTGYhvXev0znYfsLBe9zYG2DgPX3vVxX4P3238hOuD6WDpeq8NLG1rtetu4RI21ocIW-d2UEW4Nyr03tTQjXSY6DDR0JvQt0P1wDH4fA5OGtUGc_E752Bzf7cpHpPV-uGpWK4SnWOSYCrSnCjMSJXVFaspShlWJEVIZzU3jTANzg3RGa4wMbUQSqdEVGmVVZoIROkcXE-1B---ehOi3A5fdcNFSZHgjBCUk4HCE6W9C8GbRh683Sv_LTGSo1s5upWjW_nrdshcTRlrjPnH84wxxOkPcfF1QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075422092</pqid></control><display><type>article</type><title>Unlocking Circuits for Quantum With Open Source Silicon: A first look at measured open source silicon results at 4 K</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Anhang ; Zeng, Tuohang ; Zhang, Lei ; Riem, Joseph ; Adam, Gina C. ; Fleischer, David L. ; Zaslavsky, Alex ; Patterson, William R. ; Ansell, Tim ; Akturk, Akin ; Hoskins, Brian ; Shrestha, Pragya R. ; Saligane, Mehdi</creator><creatorcontrib>Li, Anhang ; Zeng, Tuohang ; Zhang, Lei ; Riem, Joseph ; Adam, Gina C. ; Fleischer, David L. ; Zaslavsky, Alex ; Patterson, William R. ; Ansell, Tim ; Akturk, Akin ; Hoskins, Brian ; Shrestha, Pragya R. ; Saligane, Mehdi</creatorcontrib><description><![CDATA[On recent years, researchers across diverse disciplines have become increasingly interested in low-temperature electronics, which encompasses electronic engineering, material research, sensing, and computing. Among the myriad applications, notable domains include liquid nitrogen-cooled high-performance computing, quantum computing, and deep space exploration <xref ref-type="bibr" rid="ref1">[1] . This dynamic landscape has witnessed the culmination of numerous research studies, as evidenced by the rich array of findings outlined in references <xref ref-type="bibr" rid="ref2">[2] , <xref ref-type="bibr" rid="ref3">[3] , <xref ref-type="bibr" rid="ref4">[4] , <xref ref-type="bibr" rid="ref5">[5] , and <xref ref-type="bibr" rid="ref6">[6] . This field is particularly fascinating due to its multifaceted applications, requiring a comprehensive understanding of knowledge, data, and tools that operate across varying temperature ranges, as detailed in <xref ref-type="bibr" rid="ref7">[7] , where the goal is to move the control logic closer to the cryogenic device being tested. This task highlights the significant obstacles that arise when dealing with cryogenic circuitry. As temperatures drop below a certain threshold, the behavior of transistors and passive devices undergoes a significant transformation. Designers must carefully measure and model these devices internally, adjusting circuit scaling based on basic models. This process demands significantly more man-hours compared with conventional circuit design methodologies. The task could be streamlined with the presence of a shared metrology device modeling database among institutions. Such a resource would alleviate the need for redundant efforts and foster efficiency in cryogenic circuit design.]]></description><identifier>ISSN: 1943-0582</identifier><identifier>EISSN: 1943-0590</identifier><identifier>DOI: 10.1109/MSSC.2024.3385734</identifier><identifier>CODEN: SCMOCC</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Circuit design ; Cryogenic temperature ; Deep space ; Design ; Electronic engineering ; Liquid nitrogen ; Low temperature ; Open source software ; Quantum computing ; Silicon ; Space exploration</subject><ispartof>IEEE solid state circuits magazine, 2024, Vol.16 (2), p.39-48</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c912-137692a142b8db4d30641a2600c8d5ef7ef19e2c81b12ed77ac627b6b8bc27033</cites><orcidid>0000-0002-4179-8376 ; 0000-0003-0027-1145 ; 0009-0002-0379-8460 ; 0000-0002-6409-3221 ; 0000-0002-5240-0271 ; 0000-0003-0237-4690 ; 0000-0003-4437-0743 ; 0000-0002-9418-9291 ; 0000-0001-9499-7822 ; 0009-0002-9576-3352 ; 0009-0005-4253-3934 ; 0000-0003-4407-3861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10584405$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10584405$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Anhang</creatorcontrib><creatorcontrib>Zeng, Tuohang</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Riem, Joseph</creatorcontrib><creatorcontrib>Adam, Gina C.</creatorcontrib><creatorcontrib>Fleischer, David L.</creatorcontrib><creatorcontrib>Zaslavsky, Alex</creatorcontrib><creatorcontrib>Patterson, William R.</creatorcontrib><creatorcontrib>Ansell, Tim</creatorcontrib><creatorcontrib>Akturk, Akin</creatorcontrib><creatorcontrib>Hoskins, Brian</creatorcontrib><creatorcontrib>Shrestha, Pragya R.</creatorcontrib><creatorcontrib>Saligane, Mehdi</creatorcontrib><title>Unlocking Circuits for Quantum With Open Source Silicon: A first look at measured open source silicon results at 4 K</title><title>IEEE solid state circuits magazine</title><addtitle>MSSC</addtitle><description><![CDATA[On recent years, researchers across diverse disciplines have become increasingly interested in low-temperature electronics, which encompasses electronic engineering, material research, sensing, and computing. Among the myriad applications, notable domains include liquid nitrogen-cooled high-performance computing, quantum computing, and deep space exploration <xref ref-type="bibr" rid="ref1">[1] . This dynamic landscape has witnessed the culmination of numerous research studies, as evidenced by the rich array of findings outlined in references <xref ref-type="bibr" rid="ref2">[2] , <xref ref-type="bibr" rid="ref3">[3] , <xref ref-type="bibr" rid="ref4">[4] , <xref ref-type="bibr" rid="ref5">[5] , and <xref ref-type="bibr" rid="ref6">[6] . This field is particularly fascinating due to its multifaceted applications, requiring a comprehensive understanding of knowledge, data, and tools that operate across varying temperature ranges, as detailed in <xref ref-type="bibr" rid="ref7">[7] , where the goal is to move the control logic closer to the cryogenic device being tested. This task highlights the significant obstacles that arise when dealing with cryogenic circuitry. As temperatures drop below a certain threshold, the behavior of transistors and passive devices undergoes a significant transformation. Designers must carefully measure and model these devices internally, adjusting circuit scaling based on basic models. This process demands significantly more man-hours compared with conventional circuit design methodologies. The task could be streamlined with the presence of a shared metrology device modeling database among institutions. Such a resource would alleviate the need for redundant efforts and foster efficiency in cryogenic circuit design.]]></description><subject>Circuit design</subject><subject>Cryogenic temperature</subject><subject>Deep space</subject><subject>Design</subject><subject>Electronic engineering</subject><subject>Liquid nitrogen</subject><subject>Low temperature</subject><subject>Open source software</subject><subject>Quantum computing</subject><subject>Silicon</subject><subject>Space exploration</subject><issn>1943-0582</issn><issn>1943-0590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LxDAURYMoOI7-AMFFwHXHfDatu6H4hSODdMRlSNNUM9NpxiRd-O9tqYir9xbn3vc4AFxitMAY5TcvZVksCCJsQWnGBWVHYIZzRhPEc3T8t2fkFJyFsEUo5YyTGYhvXev0znYfsLBe9zYG2DgPX3vVxX4P3238hOuD6WDpeq8NLG1rtetu4RI21ocIW-d2UEW4Nyr03tTQjXSY6DDR0JvQt0P1wDH4fA5OGtUGc_E752Bzf7cpHpPV-uGpWK4SnWOSYCrSnCjMSJXVFaspShlWJEVIZzU3jTANzg3RGa4wMbUQSqdEVGmVVZoIROkcXE-1B---ehOi3A5fdcNFSZHgjBCUk4HCE6W9C8GbRh683Sv_LTGSo1s5upWjW_nrdshcTRlrjPnH84wxxOkPcfF1QQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Anhang</creator><creator>Zeng, Tuohang</creator><creator>Zhang, Lei</creator><creator>Riem, Joseph</creator><creator>Adam, Gina C.</creator><creator>Fleischer, David L.</creator><creator>Zaslavsky, Alex</creator><creator>Patterson, William R.</creator><creator>Ansell, Tim</creator><creator>Akturk, Akin</creator><creator>Hoskins, Brian</creator><creator>Shrestha, Pragya R.</creator><creator>Saligane, Mehdi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4179-8376</orcidid><orcidid>https://orcid.org/0000-0003-0027-1145</orcidid><orcidid>https://orcid.org/0009-0002-0379-8460</orcidid><orcidid>https://orcid.org/0000-0002-6409-3221</orcidid><orcidid>https://orcid.org/0000-0002-5240-0271</orcidid><orcidid>https://orcid.org/0000-0003-0237-4690</orcidid><orcidid>https://orcid.org/0000-0003-4437-0743</orcidid><orcidid>https://orcid.org/0000-0002-9418-9291</orcidid><orcidid>https://orcid.org/0000-0001-9499-7822</orcidid><orcidid>https://orcid.org/0009-0002-9576-3352</orcidid><orcidid>https://orcid.org/0009-0005-4253-3934</orcidid><orcidid>https://orcid.org/0000-0003-4407-3861</orcidid></search><sort><creationdate>2024</creationdate><title>Unlocking Circuits for Quantum With Open Source Silicon: A first look at measured open source silicon results at 4 K</title><author>Li, Anhang ; Zeng, Tuohang ; Zhang, Lei ; Riem, Joseph ; Adam, Gina C. ; Fleischer, David L. ; Zaslavsky, Alex ; Patterson, William R. ; Ansell, Tim ; Akturk, Akin ; Hoskins, Brian ; Shrestha, Pragya R. ; Saligane, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c912-137692a142b8db4d30641a2600c8d5ef7ef19e2c81b12ed77ac627b6b8bc27033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuit design</topic><topic>Cryogenic temperature</topic><topic>Deep space</topic><topic>Design</topic><topic>Electronic engineering</topic><topic>Liquid nitrogen</topic><topic>Low temperature</topic><topic>Open source software</topic><topic>Quantum computing</topic><topic>Silicon</topic><topic>Space exploration</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Anhang</creatorcontrib><creatorcontrib>Zeng, Tuohang</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Riem, Joseph</creatorcontrib><creatorcontrib>Adam, Gina C.</creatorcontrib><creatorcontrib>Fleischer, David L.</creatorcontrib><creatorcontrib>Zaslavsky, Alex</creatorcontrib><creatorcontrib>Patterson, William R.</creatorcontrib><creatorcontrib>Ansell, Tim</creatorcontrib><creatorcontrib>Akturk, Akin</creatorcontrib><creatorcontrib>Hoskins, Brian</creatorcontrib><creatorcontrib>Shrestha, Pragya R.</creatorcontrib><creatorcontrib>Saligane, Mehdi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE solid state circuits magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Anhang</au><au>Zeng, Tuohang</au><au>Zhang, Lei</au><au>Riem, Joseph</au><au>Adam, Gina C.</au><au>Fleischer, David L.</au><au>Zaslavsky, Alex</au><au>Patterson, William R.</au><au>Ansell, Tim</au><au>Akturk, Akin</au><au>Hoskins, Brian</au><au>Shrestha, Pragya R.</au><au>Saligane, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unlocking Circuits for Quantum With Open Source Silicon: A first look at measured open source silicon results at 4 K</atitle><jtitle>IEEE solid state circuits magazine</jtitle><stitle>MSSC</stitle><date>2024</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>39</spage><epage>48</epage><pages>39-48</pages><issn>1943-0582</issn><eissn>1943-0590</eissn><coden>SCMOCC</coden><abstract><![CDATA[On recent years, researchers across diverse disciplines have become increasingly interested in low-temperature electronics, which encompasses electronic engineering, material research, sensing, and computing. Among the myriad applications, notable domains include liquid nitrogen-cooled high-performance computing, quantum computing, and deep space exploration <xref ref-type="bibr" rid="ref1">[1] . This dynamic landscape has witnessed the culmination of numerous research studies, as evidenced by the rich array of findings outlined in references <xref ref-type="bibr" rid="ref2">[2] , <xref ref-type="bibr" rid="ref3">[3] , <xref ref-type="bibr" rid="ref4">[4] , <xref ref-type="bibr" rid="ref5">[5] , and <xref ref-type="bibr" rid="ref6">[6] . This field is particularly fascinating due to its multifaceted applications, requiring a comprehensive understanding of knowledge, data, and tools that operate across varying temperature ranges, as detailed in <xref ref-type="bibr" rid="ref7">[7] , where the goal is to move the control logic closer to the cryogenic device being tested. This task highlights the significant obstacles that arise when dealing with cryogenic circuitry. As temperatures drop below a certain threshold, the behavior of transistors and passive devices undergoes a significant transformation. Designers must carefully measure and model these devices internally, adjusting circuit scaling based on basic models. This process demands significantly more man-hours compared with conventional circuit design methodologies. The task could be streamlined with the presence of a shared metrology device modeling database among institutions. Such a resource would alleviate the need for redundant efforts and foster efficiency in cryogenic circuit design.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/MSSC.2024.3385734</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4179-8376</orcidid><orcidid>https://orcid.org/0000-0003-0027-1145</orcidid><orcidid>https://orcid.org/0009-0002-0379-8460</orcidid><orcidid>https://orcid.org/0000-0002-6409-3221</orcidid><orcidid>https://orcid.org/0000-0002-5240-0271</orcidid><orcidid>https://orcid.org/0000-0003-0237-4690</orcidid><orcidid>https://orcid.org/0000-0003-4437-0743</orcidid><orcidid>https://orcid.org/0000-0002-9418-9291</orcidid><orcidid>https://orcid.org/0000-0001-9499-7822</orcidid><orcidid>https://orcid.org/0009-0002-9576-3352</orcidid><orcidid>https://orcid.org/0009-0005-4253-3934</orcidid><orcidid>https://orcid.org/0000-0003-4407-3861</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1943-0582
ispartof IEEE solid state circuits magazine, 2024, Vol.16 (2), p.39-48
issn 1943-0582
1943-0590
language eng
recordid cdi_ieee_primary_10584405
source IEEE Electronic Library (IEL)
subjects Circuit design
Cryogenic temperature
Deep space
Design
Electronic engineering
Liquid nitrogen
Low temperature
Open source software
Quantum computing
Silicon
Space exploration
title Unlocking Circuits for Quantum With Open Source Silicon: A first look at measured open source silicon results at 4 K
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T16%3A53%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unlocking%20Circuits%20for%20Quantum%20With%20Open%20Source%20Silicon:%20A%20first%20look%20at%20measured%20open%20source%20silicon%20results%20at%204%20K&rft.jtitle=IEEE%20solid%20state%20circuits%20magazine&rft.au=Li,%20Anhang&rft.date=2024&rft.volume=16&rft.issue=2&rft.spage=39&rft.epage=48&rft.pages=39-48&rft.issn=1943-0582&rft.eissn=1943-0590&rft.coden=SCMOCC&rft_id=info:doi/10.1109/MSSC.2024.3385734&rft_dat=%3Cproquest_RIE%3E3075422092%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075422092&rft_id=info:pmid/&rft_ieee_id=10584405&rfr_iscdi=true