Deep Reinforced Segment Selection and Equalization for Task-Oriented Semantic Communication

In this letter, we propose a novel deep reinforcement learning (DRL)-based segment selection and channel equalization strategy for a task-oriented semantic communication (TOSC) system. In non-linear channel conditions, the TOSC framework aims to coordinate computing complexity with task-oriented acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2024-08, Vol.28 (8), p.1865-1869
Hauptverfasser: Seon, Joonho, Lee, Seongwoo, Kim, Jinwook, Hyun Kim, Soo, Ghyu Sun, Young, Seo, Hyowoon, In Kim, Dong, Young Kim, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we propose a novel deep reinforcement learning (DRL)-based segment selection and channel equalization strategy for a task-oriented semantic communication (TOSC) system. In non-linear channel conditions, the TOSC framework aims to coordinate computing complexity with task-oriented accuracy. The proposed method navigates this challenge by deploying a DRL agent at the transmitter to eliminate task-irrelevant data and reduce computational complexities while placing a paired DRL agent at the receiver to select an optimal channel equalizer to ensure high accuracy. The simulation results confirm that the proposed system can reduce computational complexity and improve accuracy by 16% over state-of-the-art methods.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2024.3418389