Superimposed concatenated codes (Corresp.)

A family of codes of length n=q^{s+l} over GF( q ), with 2s \leq q are presented which are constructed by superimposing concatenated codes on a concatenated code. The rate r and the distance ratio \delta of the new codes satisfy the relation r=1-\delta+\delta \ln (\delta) for sufficiently large valu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1980-11, Vol.26 (6), p.735-736
Hauptverfasser: Sugiyama, Y., Kasahara, M., Hirasawa, S., Namekawa, T.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A family of codes of length n=q^{s+l} over GF( q ), with 2s \leq q are presented which are constructed by superimposing concatenated codes on a concatenated code. The rate r and the distance ratio \delta of the new codes satisfy the relation r=1-\delta+\delta \ln (\delta) for sufficiently large values of n and q/s . The new codes are superior to the comparable Bose-Chaudhuri-Hocquenghem (BCH) codes, for s\geq 3 , in the sense that they contain more codewords. An asymptotically good code constructed using these new codes has a distance ratio greater than those of other asymptotically good codes known to the authors for rates smaller than 0.007.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.1980.1056267