Strategizing Against Q-Learners: A Control-Theoretical Approach

In this letter, we explore the susceptibility of the independent Q-learning algorithms (a classical and widely used multi-agent reinforcement learning method) to strategic manipulation of sophisticated opponents in normal-form games played repeatedly. We quantify how much strategically sophisticated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2024, Vol.8, p.1733-1738
Hauptverfasser: Arslantas, Yuksel, Yuceel, Ege, Sayin, Muhammed O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we explore the susceptibility of the independent Q-learning algorithms (a classical and widely used multi-agent reinforcement learning method) to strategic manipulation of sophisticated opponents in normal-form games played repeatedly. We quantify how much strategically sophisticated agents can exploit naive Q-learners if they know the opponents' Q-learning algorithm. To this end, we formulate the strategic actors' interactions as a stochastic game (whose state encompasses Q-function estimates of the Q-learners) as if the Q-learning algorithms are the underlying dynamical system. We also present a quantization-based approximation scheme to tackle the continuum state space and analyze its performance for two competing strategic actors and a single strategic actor both analytically and numerically.
ISSN:2475-1456
2475-1456
DOI:10.1109/LCSYS.2024.3416240