The estimation of the gradient of a density function, with applications in pattern recognition
Nonparametric density gradient estimation using a generalized kernel approach is investigated. Conditions on the kernel functions are derived to guarantee asymptotic unbiasedness, consistency, and uniform consistency of the estimates. The results are generalized to obtain a simple mcan-shift estimat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 1975-01, Vol.21 (1), p.32-40 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 40 |
---|---|
container_issue | 1 |
container_start_page | 32 |
container_title | IEEE transactions on information theory |
container_volume | 21 |
creator | Fukunaga, K. Hostetler, L. |
description | Nonparametric density gradient estimation using a generalized kernel approach is investigated. Conditions on the kernel functions are derived to guarantee asymptotic unbiasedness, consistency, and uniform consistency of the estimates. The results are generalized to obtain a simple mcan-shift estimate that can be extended in a k -nearest-neighbor approach. Applications of gradient estimation to pattern recognition are presented using clustering and intrinsic dimensionality problems, with the ultimate goal of providing further understanding of these problems in terms of density gradients. |
doi_str_mv | 10.1109/TIT.1975.1055330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1055330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1055330</ieee_id><sourcerecordid>28642075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-5757d6d213dcbfc84f0c4edfc93cf136f0dd69fd1adea9738ce6d207f25f7b703</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EEqWwI7F4YiLFjuM4HlHFo1IllrBiuX60RqkTbFeo_x6HdGC6Ovd-50rnAHCL0QJjxB_bVbvAnNEFRpQSgs7ADFPKCl7T6hzMEMJNwauquQRXMX5lWVFczsBnuzPQxOT2Mrnew97ClDfbILUzPo1aQm18dOkI7cGrkXqAPy7toByGzqk_X4TOw0GmZIKHwah-6924vwYXVnbR3JzmHHy8PLfLt2L9_rpaPq0LRQhPBWWU6VqXmGi1saqpLFKV0VZxoiwmtUVa19xqLLWRnJFGmUwjZktq2YYhMgf3098h9N-HnEfsXVSm66Q3_SGKsqmrzNMMoglUoY8xGCuGkLOHo8BIjEWKXKQYixSnIrPlbrI4Y8w_fLr-Av_ZcUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28642075</pqid></control><display><type>article</type><title>The estimation of the gradient of a density function, with applications in pattern recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Fukunaga, K. ; Hostetler, L.</creator><creatorcontrib>Fukunaga, K. ; Hostetler, L.</creatorcontrib><description>Nonparametric density gradient estimation using a generalized kernel approach is investigated. Conditions on the kernel functions are derived to guarantee asymptotic unbiasedness, consistency, and uniform consistency of the estimates. The results are generalized to obtain a simple mcan-shift estimate that can be extended in a k -nearest-neighbor approach. Applications of gradient estimation to pattern recognition are presented using clustering and intrinsic dimensionality problems, with the ultimate goal of providing further understanding of these problems in terms of density gradients.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.1975.1055330</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Density functional theory ; Estimation ; Kernel ; Laboratories ; Pattern recognition ; Probability density function</subject><ispartof>IEEE transactions on information theory, 1975-01, Vol.21 (1), p.32-40</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-5757d6d213dcbfc84f0c4edfc93cf136f0dd69fd1adea9738ce6d207f25f7b703</citedby><cites>FETCH-LOGICAL-c339t-5757d6d213dcbfc84f0c4edfc93cf136f0dd69fd1adea9738ce6d207f25f7b703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1055330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1055330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fukunaga, K.</creatorcontrib><creatorcontrib>Hostetler, L.</creatorcontrib><title>The estimation of the gradient of a density function, with applications in pattern recognition</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Nonparametric density gradient estimation using a generalized kernel approach is investigated. Conditions on the kernel functions are derived to guarantee asymptotic unbiasedness, consistency, and uniform consistency of the estimates. The results are generalized to obtain a simple mcan-shift estimate that can be extended in a k -nearest-neighbor approach. Applications of gradient estimation to pattern recognition are presented using clustering and intrinsic dimensionality problems, with the ultimate goal of providing further understanding of these problems in terms of density gradients.</description><subject>Clustering algorithms</subject><subject>Density functional theory</subject><subject>Estimation</subject><subject>Kernel</subject><subject>Laboratories</subject><subject>Pattern recognition</subject><subject>Probability density function</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAUhS0EEqWwI7F4YiLFjuM4HlHFo1IllrBiuX60RqkTbFeo_x6HdGC6Ovd-50rnAHCL0QJjxB_bVbvAnNEFRpQSgs7ADFPKCl7T6hzMEMJNwauquQRXMX5lWVFczsBnuzPQxOT2Mrnew97ClDfbILUzPo1aQm18dOkI7cGrkXqAPy7toByGzqk_X4TOw0GmZIKHwah-6924vwYXVnbR3JzmHHy8PLfLt2L9_rpaPq0LRQhPBWWU6VqXmGi1saqpLFKV0VZxoiwmtUVa19xqLLWRnJFGmUwjZktq2YYhMgf3098h9N-HnEfsXVSm66Q3_SGKsqmrzNMMoglUoY8xGCuGkLOHo8BIjEWKXKQYixSnIrPlbrI4Y8w_fLr-Av_ZcUo</recordid><startdate>197501</startdate><enddate>197501</enddate><creator>Fukunaga, K.</creator><creator>Hostetler, L.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>197501</creationdate><title>The estimation of the gradient of a density function, with applications in pattern recognition</title><author>Fukunaga, K. ; Hostetler, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-5757d6d213dcbfc84f0c4edfc93cf136f0dd69fd1adea9738ce6d207f25f7b703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>Clustering algorithms</topic><topic>Density functional theory</topic><topic>Estimation</topic><topic>Kernel</topic><topic>Laboratories</topic><topic>Pattern recognition</topic><topic>Probability density function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukunaga, K.</creatorcontrib><creatorcontrib>Hostetler, L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fukunaga, K.</au><au>Hostetler, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The estimation of the gradient of a density function, with applications in pattern recognition</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1975-01</date><risdate>1975</risdate><volume>21</volume><issue>1</issue><spage>32</spage><epage>40</epage><pages>32-40</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Nonparametric density gradient estimation using a generalized kernel approach is investigated. Conditions on the kernel functions are derived to guarantee asymptotic unbiasedness, consistency, and uniform consistency of the estimates. The results are generalized to obtain a simple mcan-shift estimate that can be extended in a k -nearest-neighbor approach. Applications of gradient estimation to pattern recognition are presented using clustering and intrinsic dimensionality problems, with the ultimate goal of providing further understanding of these problems in terms of density gradients.</abstract><pub>IEEE</pub><doi>10.1109/TIT.1975.1055330</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 1975-01, Vol.21 (1), p.32-40 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_ieee_primary_1055330 |
source | IEEE Electronic Library (IEL) |
subjects | Clustering algorithms Density functional theory Estimation Kernel Laboratories Pattern recognition Probability density function |
title | The estimation of the gradient of a density function, with applications in pattern recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20estimation%20of%20the%20gradient%20of%20a%20density%20function,%20with%20applications%20in%20pattern%20recognition&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Fukunaga,%20K.&rft.date=1975-01&rft.volume=21&rft.issue=1&rft.spage=32&rft.epage=40&rft.pages=32-40&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.1975.1055330&rft_dat=%3Cproquest_RIE%3E28642075%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28642075&rft_id=info:pmid/&rft_ieee_id=1055330&rfr_iscdi=true |