The estimation of the gradient of a density function, with applications in pattern recognition

Nonparametric density gradient estimation using a generalized kernel approach is investigated. Conditions on the kernel functions are derived to guarantee asymptotic unbiasedness, consistency, and uniform consistency of the estimates. The results are generalized to obtain a simple mcan-shift estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1975-01, Vol.21 (1), p.32-40
Hauptverfasser: Fukunaga, K., Hostetler, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue 1
container_start_page 32
container_title IEEE transactions on information theory
container_volume 21
creator Fukunaga, K.
Hostetler, L.
description Nonparametric density gradient estimation using a generalized kernel approach is investigated. Conditions on the kernel functions are derived to guarantee asymptotic unbiasedness, consistency, and uniform consistency of the estimates. The results are generalized to obtain a simple mcan-shift estimate that can be extended in a k -nearest-neighbor approach. Applications of gradient estimation to pattern recognition are presented using clustering and intrinsic dimensionality problems, with the ultimate goal of providing further understanding of these problems in terms of density gradients.
doi_str_mv 10.1109/TIT.1975.1055330
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_1055330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1055330</ieee_id><sourcerecordid>28642075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-5757d6d213dcbfc84f0c4edfc93cf136f0dd69fd1adea9738ce6d207f25f7b703</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EEqWwI7F4YiLFjuM4HlHFo1IllrBiuX60RqkTbFeo_x6HdGC6Ovd-50rnAHCL0QJjxB_bVbvAnNEFRpQSgs7ADFPKCl7T6hzMEMJNwauquQRXMX5lWVFczsBnuzPQxOT2Mrnew97ClDfbILUzPo1aQm18dOkI7cGrkXqAPy7toByGzqk_X4TOw0GmZIKHwah-6924vwYXVnbR3JzmHHy8PLfLt2L9_rpaPq0LRQhPBWWU6VqXmGi1saqpLFKV0VZxoiwmtUVa19xqLLWRnJFGmUwjZktq2YYhMgf3098h9N-HnEfsXVSm66Q3_SGKsqmrzNMMoglUoY8xGCuGkLOHo8BIjEWKXKQYixSnIrPlbrI4Y8w_fLr-Av_ZcUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28642075</pqid></control><display><type>article</type><title>The estimation of the gradient of a density function, with applications in pattern recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Fukunaga, K. ; Hostetler, L.</creator><creatorcontrib>Fukunaga, K. ; Hostetler, L.</creatorcontrib><description>Nonparametric density gradient estimation using a generalized kernel approach is investigated. Conditions on the kernel functions are derived to guarantee asymptotic unbiasedness, consistency, and uniform consistency of the estimates. The results are generalized to obtain a simple mcan-shift estimate that can be extended in a k -nearest-neighbor approach. Applications of gradient estimation to pattern recognition are presented using clustering and intrinsic dimensionality problems, with the ultimate goal of providing further understanding of these problems in terms of density gradients.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.1975.1055330</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Density functional theory ; Estimation ; Kernel ; Laboratories ; Pattern recognition ; Probability density function</subject><ispartof>IEEE transactions on information theory, 1975-01, Vol.21 (1), p.32-40</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-5757d6d213dcbfc84f0c4edfc93cf136f0dd69fd1adea9738ce6d207f25f7b703</citedby><cites>FETCH-LOGICAL-c339t-5757d6d213dcbfc84f0c4edfc93cf136f0dd69fd1adea9738ce6d207f25f7b703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1055330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1055330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fukunaga, K.</creatorcontrib><creatorcontrib>Hostetler, L.</creatorcontrib><title>The estimation of the gradient of a density function, with applications in pattern recognition</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Nonparametric density gradient estimation using a generalized kernel approach is investigated. Conditions on the kernel functions are derived to guarantee asymptotic unbiasedness, consistency, and uniform consistency of the estimates. The results are generalized to obtain a simple mcan-shift estimate that can be extended in a k -nearest-neighbor approach. Applications of gradient estimation to pattern recognition are presented using clustering and intrinsic dimensionality problems, with the ultimate goal of providing further understanding of these problems in terms of density gradients.</description><subject>Clustering algorithms</subject><subject>Density functional theory</subject><subject>Estimation</subject><subject>Kernel</subject><subject>Laboratories</subject><subject>Pattern recognition</subject><subject>Probability density function</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAUhS0EEqWwI7F4YiLFjuM4HlHFo1IllrBiuX60RqkTbFeo_x6HdGC6Ovd-50rnAHCL0QJjxB_bVbvAnNEFRpQSgs7ADFPKCl7T6hzMEMJNwauquQRXMX5lWVFczsBnuzPQxOT2Mrnew97ClDfbILUzPo1aQm18dOkI7cGrkXqAPy7toByGzqk_X4TOw0GmZIKHwah-6924vwYXVnbR3JzmHHy8PLfLt2L9_rpaPq0LRQhPBWWU6VqXmGi1saqpLFKV0VZxoiwmtUVa19xqLLWRnJFGmUwjZktq2YYhMgf3098h9N-HnEfsXVSm66Q3_SGKsqmrzNMMoglUoY8xGCuGkLOHo8BIjEWKXKQYixSnIrPlbrI4Y8w_fLr-Av_ZcUo</recordid><startdate>197501</startdate><enddate>197501</enddate><creator>Fukunaga, K.</creator><creator>Hostetler, L.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>197501</creationdate><title>The estimation of the gradient of a density function, with applications in pattern recognition</title><author>Fukunaga, K. ; Hostetler, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-5757d6d213dcbfc84f0c4edfc93cf136f0dd69fd1adea9738ce6d207f25f7b703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>Clustering algorithms</topic><topic>Density functional theory</topic><topic>Estimation</topic><topic>Kernel</topic><topic>Laboratories</topic><topic>Pattern recognition</topic><topic>Probability density function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukunaga, K.</creatorcontrib><creatorcontrib>Hostetler, L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fukunaga, K.</au><au>Hostetler, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The estimation of the gradient of a density function, with applications in pattern recognition</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1975-01</date><risdate>1975</risdate><volume>21</volume><issue>1</issue><spage>32</spage><epage>40</epage><pages>32-40</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Nonparametric density gradient estimation using a generalized kernel approach is investigated. Conditions on the kernel functions are derived to guarantee asymptotic unbiasedness, consistency, and uniform consistency of the estimates. The results are generalized to obtain a simple mcan-shift estimate that can be extended in a k -nearest-neighbor approach. Applications of gradient estimation to pattern recognition are presented using clustering and intrinsic dimensionality problems, with the ultimate goal of providing further understanding of these problems in terms of density gradients.</abstract><pub>IEEE</pub><doi>10.1109/TIT.1975.1055330</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1975-01, Vol.21 (1), p.32-40
issn 0018-9448
1557-9654
language eng
recordid cdi_ieee_primary_1055330
source IEEE Electronic Library (IEL)
subjects Clustering algorithms
Density functional theory
Estimation
Kernel
Laboratories
Pattern recognition
Probability density function
title The estimation of the gradient of a density function, with applications in pattern recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20estimation%20of%20the%20gradient%20of%20a%20density%20function,%20with%20applications%20in%20pattern%20recognition&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Fukunaga,%20K.&rft.date=1975-01&rft.volume=21&rft.issue=1&rft.spage=32&rft.epage=40&rft.pages=32-40&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.1975.1055330&rft_dat=%3Cproquest_RIE%3E28642075%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28642075&rft_id=info:pmid/&rft_ieee_id=1055330&rfr_iscdi=true