The estimation of the gradient of a density function, with applications in pattern recognition

Nonparametric density gradient estimation using a generalized kernel approach is investigated. Conditions on the kernel functions are derived to guarantee asymptotic unbiasedness, consistency, and uniform consistency of the estimates. The results are generalized to obtain a simple mcan-shift estimat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1975-01, Vol.21 (1), p.32-40
Hauptverfasser: Fukunaga, K., Hostetler, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonparametric density gradient estimation using a generalized kernel approach is investigated. Conditions on the kernel functions are derived to guarantee asymptotic unbiasedness, consistency, and uniform consistency of the estimates. The results are generalized to obtain a simple mcan-shift estimate that can be extended in a k -nearest-neighbor approach. Applications of gradient estimation to pattern recognition are presented using clustering and intrinsic dimensionality problems, with the ultimate goal of providing further understanding of these problems in terms of density gradients.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.1975.1055330