Learning Informative Health Indicators Through Unsupervised Contrastive Learning
Monitoring the health of complex industrial assets is crucial for safe and efficient operations. Health indicators that provide quantitative real-time insights into the health status of industrial assets over time serve as valuable tools for, e.g., fault detection or prognostics. This article propos...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on reliability 2024, p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Monitoring the health of complex industrial assets is crucial for safe and efficient operations. Health indicators that provide quantitative real-time insights into the health status of industrial assets over time serve as valuable tools for, e.g., fault detection or prognostics. This article proposes a novel, versatile, and unsupervised approach to learn health indicators using contrastive learning, where the operational time serves as a proxy for degradation. To highlight its versatility, the approach is evaluated on two tasks and case studies with different characteristics: wear assessment of milling machines and fault detection of railway wheels. Our results show that the proposed methodology effectively learns a health indicator that follows the wear of milling machines (0.97 correlation on average) and is suitable for fault detection in railway wheels (\mathbf {88.7\%} balanced accuracy). The conducted experiments demonstrate the versatility of the approach for various systems and health conditions. |
---|---|
ISSN: | 0018-9529 1558-1721 |
DOI: | 10.1109/TR.2024.3397394 |