Adaptive Broad Deep Reinforcement Learning for Intelligent Traffic Light Control
Deep reinforcement learning (DRL) has superior autonomous decision-making capabilities, combining deep learning and reinforcement learning (RL). Unlike DRL employs deep neural networks (DNNs), broad RL (BRL) adopts the broad learning system (BLS) that is established with flat networks to generate th...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-09, Vol.11 (17), p.28496-28507 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28507 |
---|---|
container_issue | 17 |
container_start_page | 28496 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Zhu, Ruijie Wu, Shuning Li, Lulu Ding, Wenting Lv, Ping Sui, Luyao |
description | Deep reinforcement learning (DRL) has superior autonomous decision-making capabilities, combining deep learning and reinforcement learning (RL). Unlike DRL employs deep neural networks (DNNs), broad RL (BRL) adopts the broad learning system (BLS) that is established with flat networks to generate the strategy. This article proposes the multiagent adaptive broad-DRL (ABDRL) approach for traffic light control (TLC), which combines the broad network with the deep network structure. Specifically, the structure of ABDRL first expands in the form of flatted broad networks. Then, the feature representation module that contains DNNs is employed to extract the critical traffic information. In addition, experiences sampled randomly by the experience replay mechanism cannot reflect the current training status of the agent effectively. In order to alleviate the impacts caused by random sampling, the forgetful experience mechanism (FEM) is incorporated into ABDRL. The FEM enables the agent to discriminate the importance of experiences stored in the experience reply buffer to improve robustness and adaptability. We validate the effectiveness of ABDRL in TLC, and the results illustrate the optimality and robustness of ABDRL over the state-of-the-art multiagent DRL (MADRL) algorithms. |
doi_str_mv | 10.1109/JIOT.2024.3401829 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10531693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10531693</ieee_id><sourcerecordid>3096378352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-ce1b9cc1652106a4278e78388e467c74ba46c6f164e37bd8aef14712d0dc141b3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gOBFwOvOnCRN28s5vyaFiczrkKanM6Nra5oJ_ntbtotdncM57wc8hNwCmwOw7OF9td7MOeNyLiSDlGcXZMIFTyKpFL8826_JrO93jLHBFkOmJuRjUZouuF-kj741JX1C7OgnuqZqvcU9NoHmaHzjmi0dTnTVBKxrtx0fG2-qylmau-13oMu2Cb6tb8hVZeoeZ6c5JV8vz5vlW5SvX1fLRR5ZLlWILEKRWQsq5sCUkTxJMUlFmqJUiU1kYaSyqgIlUSRFmRqsQCbAS1ZakFCIKbk_5na-_TlgH_SuPfhmqNSCZUoMYTEfVHBUWd_2vcdKd97tjf_TwPTITo_s9MhOn9gNnrujxyHimT4WoDIh_gHywWm7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096378352</pqid></control><display><type>article</type><title>Adaptive Broad Deep Reinforcement Learning for Intelligent Traffic Light Control</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Ruijie ; Wu, Shuning ; Li, Lulu ; Ding, Wenting ; Lv, Ping ; Sui, Luyao</creator><creatorcontrib>Zhu, Ruijie ; Wu, Shuning ; Li, Lulu ; Ding, Wenting ; Lv, Ping ; Sui, Luyao</creatorcontrib><description>Deep reinforcement learning (DRL) has superior autonomous decision-making capabilities, combining deep learning and reinforcement learning (RL). Unlike DRL employs deep neural networks (DNNs), broad RL (BRL) adopts the broad learning system (BLS) that is established with flat networks to generate the strategy. This article proposes the multiagent adaptive broad-DRL (ABDRL) approach for traffic light control (TLC), which combines the broad network with the deep network structure. Specifically, the structure of ABDRL first expands in the form of flatted broad networks. Then, the feature representation module that contains DNNs is employed to extract the critical traffic information. In addition, experiences sampled randomly by the experience replay mechanism cannot reflect the current training status of the agent effectively. In order to alleviate the impacts caused by random sampling, the forgetful experience mechanism (FEM) is incorporated into ABDRL. The FEM enables the agent to discriminate the importance of experiences stored in the experience reply buffer to improve robustness and adaptability. We validate the effectiveness of ABDRL in TLC, and the results illustrate the optimality and robustness of ABDRL over the state-of-the-art multiagent DRL (MADRL) algorithms.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3401829</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Algorithms ; Artificial neural networks ; Autonomous vehicles ; Broad learning system (BLS) ; broad reinforcement learning (BRL) ; Deep learning ; Deep reinforcement learning ; deep reinforcement learning (DRL) ; Feature extraction ; Finite element analysis ; Internet of Things ; Machine learning ; multiagent DRL (MADRL) ; Multiagent systems ; Optimization ; Random sampling ; Reagents ; Robustness ; Traffic control ; Traffic information ; traffic light control (TLC) ; Traffic signals ; Training</subject><ispartof>IEEE internet of things journal, 2024-09, Vol.11 (17), p.28496-28507</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-ce1b9cc1652106a4278e78388e467c74ba46c6f164e37bd8aef14712d0dc141b3</cites><orcidid>0000-0003-1210-546X ; 0000-0003-1359-340X ; 0009-0003-7967-2829 ; 0000-0003-1684-8279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10531693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10531693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Ruijie</creatorcontrib><creatorcontrib>Wu, Shuning</creatorcontrib><creatorcontrib>Li, Lulu</creatorcontrib><creatorcontrib>Ding, Wenting</creatorcontrib><creatorcontrib>Lv, Ping</creatorcontrib><creatorcontrib>Sui, Luyao</creatorcontrib><title>Adaptive Broad Deep Reinforcement Learning for Intelligent Traffic Light Control</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Deep reinforcement learning (DRL) has superior autonomous decision-making capabilities, combining deep learning and reinforcement learning (RL). Unlike DRL employs deep neural networks (DNNs), broad RL (BRL) adopts the broad learning system (BLS) that is established with flat networks to generate the strategy. This article proposes the multiagent adaptive broad-DRL (ABDRL) approach for traffic light control (TLC), which combines the broad network with the deep network structure. Specifically, the structure of ABDRL first expands in the form of flatted broad networks. Then, the feature representation module that contains DNNs is employed to extract the critical traffic information. In addition, experiences sampled randomly by the experience replay mechanism cannot reflect the current training status of the agent effectively. In order to alleviate the impacts caused by random sampling, the forgetful experience mechanism (FEM) is incorporated into ABDRL. The FEM enables the agent to discriminate the importance of experiences stored in the experience reply buffer to improve robustness and adaptability. We validate the effectiveness of ABDRL in TLC, and the results illustrate the optimality and robustness of ABDRL over the state-of-the-art multiagent DRL (MADRL) algorithms.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Autonomous vehicles</subject><subject>Broad learning system (BLS)</subject><subject>broad reinforcement learning (BRL)</subject><subject>Deep learning</subject><subject>Deep reinforcement learning</subject><subject>deep reinforcement learning (DRL)</subject><subject>Feature extraction</subject><subject>Finite element analysis</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>multiagent DRL (MADRL)</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>Random sampling</subject><subject>Reagents</subject><subject>Robustness</subject><subject>Traffic control</subject><subject>Traffic information</subject><subject>traffic light control (TLC)</subject><subject>Traffic signals</subject><subject>Training</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gOBFwOvOnCRN28s5vyaFiczrkKanM6Nra5oJ_ntbtotdncM57wc8hNwCmwOw7OF9td7MOeNyLiSDlGcXZMIFTyKpFL8826_JrO93jLHBFkOmJuRjUZouuF-kj741JX1C7OgnuqZqvcU9NoHmaHzjmi0dTnTVBKxrtx0fG2-qylmau-13oMu2Cb6tb8hVZeoeZ6c5JV8vz5vlW5SvX1fLRR5ZLlWILEKRWQsq5sCUkTxJMUlFmqJUiU1kYaSyqgIlUSRFmRqsQCbAS1ZakFCIKbk_5na-_TlgH_SuPfhmqNSCZUoMYTEfVHBUWd_2vcdKd97tjf_TwPTITo_s9MhOn9gNnrujxyHimT4WoDIh_gHywWm7</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Zhu, Ruijie</creator><creator>Wu, Shuning</creator><creator>Li, Lulu</creator><creator>Ding, Wenting</creator><creator>Lv, Ping</creator><creator>Sui, Luyao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1210-546X</orcidid><orcidid>https://orcid.org/0000-0003-1359-340X</orcidid><orcidid>https://orcid.org/0009-0003-7967-2829</orcidid><orcidid>https://orcid.org/0000-0003-1684-8279</orcidid></search><sort><creationdate>20240901</creationdate><title>Adaptive Broad Deep Reinforcement Learning for Intelligent Traffic Light Control</title><author>Zhu, Ruijie ; Wu, Shuning ; Li, Lulu ; Ding, Wenting ; Lv, Ping ; Sui, Luyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-ce1b9cc1652106a4278e78388e467c74ba46c6f164e37bd8aef14712d0dc141b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Autonomous vehicles</topic><topic>Broad learning system (BLS)</topic><topic>broad reinforcement learning (BRL)</topic><topic>Deep learning</topic><topic>Deep reinforcement learning</topic><topic>deep reinforcement learning (DRL)</topic><topic>Feature extraction</topic><topic>Finite element analysis</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>multiagent DRL (MADRL)</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>Random sampling</topic><topic>Reagents</topic><topic>Robustness</topic><topic>Traffic control</topic><topic>Traffic information</topic><topic>traffic light control (TLC)</topic><topic>Traffic signals</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Ruijie</creatorcontrib><creatorcontrib>Wu, Shuning</creatorcontrib><creatorcontrib>Li, Lulu</creatorcontrib><creatorcontrib>Ding, Wenting</creatorcontrib><creatorcontrib>Lv, Ping</creatorcontrib><creatorcontrib>Sui, Luyao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Ruijie</au><au>Wu, Shuning</au><au>Li, Lulu</au><au>Ding, Wenting</au><au>Lv, Ping</au><au>Sui, Luyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Broad Deep Reinforcement Learning for Intelligent Traffic Light Control</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>11</volume><issue>17</issue><spage>28496</spage><epage>28507</epage><pages>28496-28507</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Deep reinforcement learning (DRL) has superior autonomous decision-making capabilities, combining deep learning and reinforcement learning (RL). Unlike DRL employs deep neural networks (DNNs), broad RL (BRL) adopts the broad learning system (BLS) that is established with flat networks to generate the strategy. This article proposes the multiagent adaptive broad-DRL (ABDRL) approach for traffic light control (TLC), which combines the broad network with the deep network structure. Specifically, the structure of ABDRL first expands in the form of flatted broad networks. Then, the feature representation module that contains DNNs is employed to extract the critical traffic information. In addition, experiences sampled randomly by the experience replay mechanism cannot reflect the current training status of the agent effectively. In order to alleviate the impacts caused by random sampling, the forgetful experience mechanism (FEM) is incorporated into ABDRL. The FEM enables the agent to discriminate the importance of experiences stored in the experience reply buffer to improve robustness and adaptability. We validate the effectiveness of ABDRL in TLC, and the results illustrate the optimality and robustness of ABDRL over the state-of-the-art multiagent DRL (MADRL) algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3401829</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1210-546X</orcidid><orcidid>https://orcid.org/0000-0003-1359-340X</orcidid><orcidid>https://orcid.org/0009-0003-7967-2829</orcidid><orcidid>https://orcid.org/0000-0003-1684-8279</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-09, Vol.11 (17), p.28496-28507 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10531693 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Algorithms Artificial neural networks Autonomous vehicles Broad learning system (BLS) broad reinforcement learning (BRL) Deep learning Deep reinforcement learning deep reinforcement learning (DRL) Feature extraction Finite element analysis Internet of Things Machine learning multiagent DRL (MADRL) Multiagent systems Optimization Random sampling Reagents Robustness Traffic control Traffic information traffic light control (TLC) Traffic signals Training |
title | Adaptive Broad Deep Reinforcement Learning for Intelligent Traffic Light Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Broad%20Deep%20Reinforcement%20Learning%20for%20Intelligent%20Traffic%20Light%20Control&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhu,%20Ruijie&rft.date=2024-09-01&rft.volume=11&rft.issue=17&rft.spage=28496&rft.epage=28507&rft.pages=28496-28507&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3401829&rft_dat=%3Cproquest_RIE%3E3096378352%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096378352&rft_id=info:pmid/&rft_ieee_id=10531693&rfr_iscdi=true |