Adaptive Broad Deep Reinforcement Learning for Intelligent Traffic Light Control

Deep reinforcement learning (DRL) has superior autonomous decision-making capabilities, combining deep learning and reinforcement learning (RL). Unlike DRL employs deep neural networks (DNNs), broad RL (BRL) adopts the broad learning system (BLS) that is established with flat networks to generate th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-09, Vol.11 (17), p.28496-28507
Hauptverfasser: Zhu, Ruijie, Wu, Shuning, Li, Lulu, Ding, Wenting, Lv, Ping, Sui, Luyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28507
container_issue 17
container_start_page 28496
container_title IEEE internet of things journal
container_volume 11
creator Zhu, Ruijie
Wu, Shuning
Li, Lulu
Ding, Wenting
Lv, Ping
Sui, Luyao
description Deep reinforcement learning (DRL) has superior autonomous decision-making capabilities, combining deep learning and reinforcement learning (RL). Unlike DRL employs deep neural networks (DNNs), broad RL (BRL) adopts the broad learning system (BLS) that is established with flat networks to generate the strategy. This article proposes the multiagent adaptive broad-DRL (ABDRL) approach for traffic light control (TLC), which combines the broad network with the deep network structure. Specifically, the structure of ABDRL first expands in the form of flatted broad networks. Then, the feature representation module that contains DNNs is employed to extract the critical traffic information. In addition, experiences sampled randomly by the experience replay mechanism cannot reflect the current training status of the agent effectively. In order to alleviate the impacts caused by random sampling, the forgetful experience mechanism (FEM) is incorporated into ABDRL. The FEM enables the agent to discriminate the importance of experiences stored in the experience reply buffer to improve robustness and adaptability. We validate the effectiveness of ABDRL in TLC, and the results illustrate the optimality and robustness of ABDRL over the state-of-the-art multiagent DRL (MADRL) algorithms.
doi_str_mv 10.1109/JIOT.2024.3401829
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10531693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10531693</ieee_id><sourcerecordid>3096378352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-ce1b9cc1652106a4278e78388e467c74ba46c6f164e37bd8aef14712d0dc141b3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOOZ-gOBFwOvOnCRN28s5vyaFiczrkKanM6Nra5oJ_ntbtotdncM57wc8hNwCmwOw7OF9td7MOeNyLiSDlGcXZMIFTyKpFL8826_JrO93jLHBFkOmJuRjUZouuF-kj741JX1C7OgnuqZqvcU9NoHmaHzjmi0dTnTVBKxrtx0fG2-qylmau-13oMu2Cb6tb8hVZeoeZ6c5JV8vz5vlW5SvX1fLRR5ZLlWILEKRWQsq5sCUkTxJMUlFmqJUiU1kYaSyqgIlUSRFmRqsQCbAS1ZakFCIKbk_5na-_TlgH_SuPfhmqNSCZUoMYTEfVHBUWd_2vcdKd97tjf_TwPTITo_s9MhOn9gNnrujxyHimT4WoDIh_gHywWm7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096378352</pqid></control><display><type>article</type><title>Adaptive Broad Deep Reinforcement Learning for Intelligent Traffic Light Control</title><source>IEEE Electronic Library (IEL)</source><creator>Zhu, Ruijie ; Wu, Shuning ; Li, Lulu ; Ding, Wenting ; Lv, Ping ; Sui, Luyao</creator><creatorcontrib>Zhu, Ruijie ; Wu, Shuning ; Li, Lulu ; Ding, Wenting ; Lv, Ping ; Sui, Luyao</creatorcontrib><description>Deep reinforcement learning (DRL) has superior autonomous decision-making capabilities, combining deep learning and reinforcement learning (RL). Unlike DRL employs deep neural networks (DNNs), broad RL (BRL) adopts the broad learning system (BLS) that is established with flat networks to generate the strategy. This article proposes the multiagent adaptive broad-DRL (ABDRL) approach for traffic light control (TLC), which combines the broad network with the deep network structure. Specifically, the structure of ABDRL first expands in the form of flatted broad networks. Then, the feature representation module that contains DNNs is employed to extract the critical traffic information. In addition, experiences sampled randomly by the experience replay mechanism cannot reflect the current training status of the agent effectively. In order to alleviate the impacts caused by random sampling, the forgetful experience mechanism (FEM) is incorporated into ABDRL. The FEM enables the agent to discriminate the importance of experiences stored in the experience reply buffer to improve robustness and adaptability. We validate the effectiveness of ABDRL in TLC, and the results illustrate the optimality and robustness of ABDRL over the state-of-the-art multiagent DRL (MADRL) algorithms.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3401829</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Algorithms ; Artificial neural networks ; Autonomous vehicles ; Broad learning system (BLS) ; broad reinforcement learning (BRL) ; Deep learning ; Deep reinforcement learning ; deep reinforcement learning (DRL) ; Feature extraction ; Finite element analysis ; Internet of Things ; Machine learning ; multiagent DRL (MADRL) ; Multiagent systems ; Optimization ; Random sampling ; Reagents ; Robustness ; Traffic control ; Traffic information ; traffic light control (TLC) ; Traffic signals ; Training</subject><ispartof>IEEE internet of things journal, 2024-09, Vol.11 (17), p.28496-28507</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-ce1b9cc1652106a4278e78388e467c74ba46c6f164e37bd8aef14712d0dc141b3</cites><orcidid>0000-0003-1210-546X ; 0000-0003-1359-340X ; 0009-0003-7967-2829 ; 0000-0003-1684-8279</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10531693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10531693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Ruijie</creatorcontrib><creatorcontrib>Wu, Shuning</creatorcontrib><creatorcontrib>Li, Lulu</creatorcontrib><creatorcontrib>Ding, Wenting</creatorcontrib><creatorcontrib>Lv, Ping</creatorcontrib><creatorcontrib>Sui, Luyao</creatorcontrib><title>Adaptive Broad Deep Reinforcement Learning for Intelligent Traffic Light Control</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Deep reinforcement learning (DRL) has superior autonomous decision-making capabilities, combining deep learning and reinforcement learning (RL). Unlike DRL employs deep neural networks (DNNs), broad RL (BRL) adopts the broad learning system (BLS) that is established with flat networks to generate the strategy. This article proposes the multiagent adaptive broad-DRL (ABDRL) approach for traffic light control (TLC), which combines the broad network with the deep network structure. Specifically, the structure of ABDRL first expands in the form of flatted broad networks. Then, the feature representation module that contains DNNs is employed to extract the critical traffic information. In addition, experiences sampled randomly by the experience replay mechanism cannot reflect the current training status of the agent effectively. In order to alleviate the impacts caused by random sampling, the forgetful experience mechanism (FEM) is incorporated into ABDRL. The FEM enables the agent to discriminate the importance of experiences stored in the experience reply buffer to improve robustness and adaptability. We validate the effectiveness of ABDRL in TLC, and the results illustrate the optimality and robustness of ABDRL over the state-of-the-art multiagent DRL (MADRL) algorithms.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Autonomous vehicles</subject><subject>Broad learning system (BLS)</subject><subject>broad reinforcement learning (BRL)</subject><subject>Deep learning</subject><subject>Deep reinforcement learning</subject><subject>deep reinforcement learning (DRL)</subject><subject>Feature extraction</subject><subject>Finite element analysis</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>multiagent DRL (MADRL)</subject><subject>Multiagent systems</subject><subject>Optimization</subject><subject>Random sampling</subject><subject>Reagents</subject><subject>Robustness</subject><subject>Traffic control</subject><subject>Traffic information</subject><subject>traffic light control (TLC)</subject><subject>Traffic signals</subject><subject>Training</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOOZ-gOBFwOvOnCRN28s5vyaFiczrkKanM6Nra5oJ_ntbtotdncM57wc8hNwCmwOw7OF9td7MOeNyLiSDlGcXZMIFTyKpFL8826_JrO93jLHBFkOmJuRjUZouuF-kj741JX1C7OgnuqZqvcU9NoHmaHzjmi0dTnTVBKxrtx0fG2-qylmau-13oMu2Cb6tb8hVZeoeZ6c5JV8vz5vlW5SvX1fLRR5ZLlWILEKRWQsq5sCUkTxJMUlFmqJUiU1kYaSyqgIlUSRFmRqsQCbAS1ZakFCIKbk_5na-_TlgH_SuPfhmqNSCZUoMYTEfVHBUWd_2vcdKd97tjf_TwPTITo_s9MhOn9gNnrujxyHimT4WoDIh_gHywWm7</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Zhu, Ruijie</creator><creator>Wu, Shuning</creator><creator>Li, Lulu</creator><creator>Ding, Wenting</creator><creator>Lv, Ping</creator><creator>Sui, Luyao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1210-546X</orcidid><orcidid>https://orcid.org/0000-0003-1359-340X</orcidid><orcidid>https://orcid.org/0009-0003-7967-2829</orcidid><orcidid>https://orcid.org/0000-0003-1684-8279</orcidid></search><sort><creationdate>20240901</creationdate><title>Adaptive Broad Deep Reinforcement Learning for Intelligent Traffic Light Control</title><author>Zhu, Ruijie ; Wu, Shuning ; Li, Lulu ; Ding, Wenting ; Lv, Ping ; Sui, Luyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-ce1b9cc1652106a4278e78388e467c74ba46c6f164e37bd8aef14712d0dc141b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Autonomous vehicles</topic><topic>Broad learning system (BLS)</topic><topic>broad reinforcement learning (BRL)</topic><topic>Deep learning</topic><topic>Deep reinforcement learning</topic><topic>deep reinforcement learning (DRL)</topic><topic>Feature extraction</topic><topic>Finite element analysis</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>multiagent DRL (MADRL)</topic><topic>Multiagent systems</topic><topic>Optimization</topic><topic>Random sampling</topic><topic>Reagents</topic><topic>Robustness</topic><topic>Traffic control</topic><topic>Traffic information</topic><topic>traffic light control (TLC)</topic><topic>Traffic signals</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Ruijie</creatorcontrib><creatorcontrib>Wu, Shuning</creatorcontrib><creatorcontrib>Li, Lulu</creatorcontrib><creatorcontrib>Ding, Wenting</creatorcontrib><creatorcontrib>Lv, Ping</creatorcontrib><creatorcontrib>Sui, Luyao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Ruijie</au><au>Wu, Shuning</au><au>Li, Lulu</au><au>Ding, Wenting</au><au>Lv, Ping</au><au>Sui, Luyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Broad Deep Reinforcement Learning for Intelligent Traffic Light Control</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-09-01</date><risdate>2024</risdate><volume>11</volume><issue>17</issue><spage>28496</spage><epage>28507</epage><pages>28496-28507</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Deep reinforcement learning (DRL) has superior autonomous decision-making capabilities, combining deep learning and reinforcement learning (RL). Unlike DRL employs deep neural networks (DNNs), broad RL (BRL) adopts the broad learning system (BLS) that is established with flat networks to generate the strategy. This article proposes the multiagent adaptive broad-DRL (ABDRL) approach for traffic light control (TLC), which combines the broad network with the deep network structure. Specifically, the structure of ABDRL first expands in the form of flatted broad networks. Then, the feature representation module that contains DNNs is employed to extract the critical traffic information. In addition, experiences sampled randomly by the experience replay mechanism cannot reflect the current training status of the agent effectively. In order to alleviate the impacts caused by random sampling, the forgetful experience mechanism (FEM) is incorporated into ABDRL. The FEM enables the agent to discriminate the importance of experiences stored in the experience reply buffer to improve robustness and adaptability. We validate the effectiveness of ABDRL in TLC, and the results illustrate the optimality and robustness of ABDRL over the state-of-the-art multiagent DRL (MADRL) algorithms.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3401829</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1210-546X</orcidid><orcidid>https://orcid.org/0000-0003-1359-340X</orcidid><orcidid>https://orcid.org/0009-0003-7967-2829</orcidid><orcidid>https://orcid.org/0000-0003-1684-8279</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-09, Vol.11 (17), p.28496-28507
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10531693
source IEEE Electronic Library (IEL)
subjects Adaptive control
Algorithms
Artificial neural networks
Autonomous vehicles
Broad learning system (BLS)
broad reinforcement learning (BRL)
Deep learning
Deep reinforcement learning
deep reinforcement learning (DRL)
Feature extraction
Finite element analysis
Internet of Things
Machine learning
multiagent DRL (MADRL)
Multiagent systems
Optimization
Random sampling
Reagents
Robustness
Traffic control
Traffic information
traffic light control (TLC)
Traffic signals
Training
title Adaptive Broad Deep Reinforcement Learning for Intelligent Traffic Light Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A42%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Broad%20Deep%20Reinforcement%20Learning%20for%20Intelligent%20Traffic%20Light%20Control&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Zhu,%20Ruijie&rft.date=2024-09-01&rft.volume=11&rft.issue=17&rft.spage=28496&rft.epage=28507&rft.pages=28496-28507&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3401829&rft_dat=%3Cproquest_RIE%3E3096378352%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096378352&rft_id=info:pmid/&rft_ieee_id=10531693&rfr_iscdi=true