LHA-Net: A Lightweight and High-accuracy Network for Road Surface Defect Detection
Road surface defect detection can effectively reduce maintenance costs, which is a critical component in road structural health monitoring. However, existing methods often face challenges in the heavy computational parameters and high-accuracy detection, limiting their practical applicability in res...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent vehicles 2024, p.1-15 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on intelligent vehicles |
container_volume | |
creator | Li, Gang Zhang, Cheng Li, Min Han, De-Long Zhou, Ming-Le |
description | Road surface defect detection can effectively reduce maintenance costs, which is a critical component in road structural health monitoring. However, existing methods often face challenges in the heavy computational parameters and high-accuracy detection, limiting their practical applicability in resource-constrained industrial settings. To alleviate this gap, we propose a Lightweight and High-accuracy Network (LHA-Net) for road surface defect detection, consisting of three sub-networks for feature extraction, feature fusion, and detection head. First, the proposed Direction-guided Global Feature-Aware Module (DGFM) and the proposed Heterokernel Local Feature-Aware Module (HLFM) are used in the feature extraction sub-net to extract global and local features while minimizing network parameters. Second, we propose an Asymptotically Weighted Aggregation Mechanism (AWAM) in the feature fusion sub-net, which efficiently merges detailed and semantic features through asymptotic multi-scale fusion and weighted fusion at multiple stages. Third, we propose a Lightweight Decoupling Head (LDH) in the detection head sub-net to extract target location and category information by emphasizing defect details in horizontal and vertical dimensions. Finally, to improve the generalizability, we propose the RDD-CC dataset extension of RDD2022 using road images collected by automobiles in China. Compared with the well-established lightweight YOLOv8n, LHA -Net achieves comparable or superior mAP@.5 scores with gains of +0.8%, +0.5%, and +0.3% on RDD-CC, RDD-SCM, and RDD-SCD datasets, respectively. Remarkably, LHA-Net does so with only 2.5M parameters (reduced by 16%) and 5.6 GFLOPs (reduced the computational load by 30%). The code and datasets are available at https://github.com/ZCZST01/LHA-Net . |
doi_str_mv | 10.1109/TIV.2024.3400035 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_10529592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10529592</ieee_id><sourcerecordid>10_1109_TIV_2024_3400035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c132t-f434b6677f149253d67a7b3ccb054848eb962d58393a54ad1d436590d7af1bb43</originalsourceid><addsrcrecordid>eNpNkMlOwzAURS0EElXpngUL_4CLx8RmF5UhlSKQSmFreYQwNMhJVfXvcdQisXn3Ls59iwPAJcFzQrC6Xi9f5xRTPmccY8zECZhQViokFeanf10KeQ5mff-REVJIKrGagFVTV-gxDDewgk379j7swnih2XhY54aMc9tk3B5maNelTxi7BFed8fB5m6JxAd6GGNyQY8jRdpsLcBbNVx9mx5yCl_u79aJGzdPDclE1yBFGBxQ547YoyjISrqhgvihNaZlzFgsuuQxWFdQLyRQzghtPPGeFUNiXJhJrOZsCfPjrUtf3KUT9k9pvk_aaYD1q0VmLHrXoo5Y8uTpM2hDCP1xQJRRlv60MXKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>LHA-Net: A Lightweight and High-accuracy Network for Road Surface Defect Detection</title><source>IEEE/IET Electronic Library</source><creator>Li, Gang ; Zhang, Cheng ; Li, Min ; Han, De-Long ; Zhou, Ming-Le</creator><creatorcontrib>Li, Gang ; Zhang, Cheng ; Li, Min ; Han, De-Long ; Zhou, Ming-Le</creatorcontrib><description>Road surface defect detection can effectively reduce maintenance costs, which is a critical component in road structural health monitoring. However, existing methods often face challenges in the heavy computational parameters and high-accuracy detection, limiting their practical applicability in resource-constrained industrial settings. To alleviate this gap, we propose a Lightweight and High-accuracy Network (LHA-Net) for road surface defect detection, consisting of three sub-networks for feature extraction, feature fusion, and detection head. First, the proposed Direction-guided Global Feature-Aware Module (DGFM) and the proposed Heterokernel Local Feature-Aware Module (HLFM) are used in the feature extraction sub-net to extract global and local features while minimizing network parameters. Second, we propose an Asymptotically Weighted Aggregation Mechanism (AWAM) in the feature fusion sub-net, which efficiently merges detailed and semantic features through asymptotic multi-scale fusion and weighted fusion at multiple stages. Third, we propose a Lightweight Decoupling Head (LDH) in the detection head sub-net to extract target location and category information by emphasizing defect details in horizontal and vertical dimensions. Finally, to improve the generalizability, we propose the RDD-CC dataset extension of RDD2022 using road images collected by automobiles in China. Compared with the well-established lightweight YOLOv8n, LHA -Net achieves comparable or superior mAP@.5 scores with gains of +0.8%, +0.5%, and +0.3% on RDD-CC, RDD-SCM, and RDD-SCD datasets, respectively. Remarkably, LHA-Net does so with only 2.5M parameters (reduced by 16%) and 5.6 GFLOPs (reduced the computational load by 30%). The code and datasets are available at https://github.com/ZCZST01/LHA-Net .</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2024.3400035</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>IEEE</publisher><subject>Costs ; Defect detection ; Feature extraction ; Global and local features ; Head ; Lightweight decoupling head ; Maintenance ; Multiscale feature fusion ; Road surface defect detection ; Roads ; Semantics</subject><ispartof>IEEE transactions on intelligent vehicles, 2024, p.1-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10529592$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4009,27902,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10529592$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Han, De-Long</creatorcontrib><creatorcontrib>Zhou, Ming-Le</creatorcontrib><title>LHA-Net: A Lightweight and High-accuracy Network for Road Surface Defect Detection</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>Road surface defect detection can effectively reduce maintenance costs, which is a critical component in road structural health monitoring. However, existing methods often face challenges in the heavy computational parameters and high-accuracy detection, limiting their practical applicability in resource-constrained industrial settings. To alleviate this gap, we propose a Lightweight and High-accuracy Network (LHA-Net) for road surface defect detection, consisting of three sub-networks for feature extraction, feature fusion, and detection head. First, the proposed Direction-guided Global Feature-Aware Module (DGFM) and the proposed Heterokernel Local Feature-Aware Module (HLFM) are used in the feature extraction sub-net to extract global and local features while minimizing network parameters. Second, we propose an Asymptotically Weighted Aggregation Mechanism (AWAM) in the feature fusion sub-net, which efficiently merges detailed and semantic features through asymptotic multi-scale fusion and weighted fusion at multiple stages. Third, we propose a Lightweight Decoupling Head (LDH) in the detection head sub-net to extract target location and category information by emphasizing defect details in horizontal and vertical dimensions. Finally, to improve the generalizability, we propose the RDD-CC dataset extension of RDD2022 using road images collected by automobiles in China. Compared with the well-established lightweight YOLOv8n, LHA -Net achieves comparable or superior mAP@.5 scores with gains of +0.8%, +0.5%, and +0.3% on RDD-CC, RDD-SCM, and RDD-SCD datasets, respectively. Remarkably, LHA-Net does so with only 2.5M parameters (reduced by 16%) and 5.6 GFLOPs (reduced the computational load by 30%). The code and datasets are available at https://github.com/ZCZST01/LHA-Net .</description><subject>Costs</subject><subject>Defect detection</subject><subject>Feature extraction</subject><subject>Global and local features</subject><subject>Head</subject><subject>Lightweight decoupling head</subject><subject>Maintenance</subject><subject>Multiscale feature fusion</subject><subject>Road surface defect detection</subject><subject>Roads</subject><subject>Semantics</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMlOwzAURS0EElXpngUL_4CLx8RmF5UhlSKQSmFreYQwNMhJVfXvcdQisXn3Ls59iwPAJcFzQrC6Xi9f5xRTPmccY8zECZhQViokFeanf10KeQ5mff-REVJIKrGagFVTV-gxDDewgk379j7swnih2XhY54aMc9tk3B5maNelTxi7BFed8fB5m6JxAd6GGNyQY8jRdpsLcBbNVx9mx5yCl_u79aJGzdPDclE1yBFGBxQ547YoyjISrqhgvihNaZlzFgsuuQxWFdQLyRQzghtPPGeFUNiXJhJrOZsCfPjrUtf3KUT9k9pvk_aaYD1q0VmLHrXoo5Y8uTpM2hDCP1xQJRRlv60MXKI</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Gang</creator><creator>Zhang, Cheng</creator><creator>Li, Min</creator><creator>Han, De-Long</creator><creator>Zhou, Ming-Le</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>LHA-Net: A Lightweight and High-accuracy Network for Road Surface Defect Detection</title><author>Li, Gang ; Zhang, Cheng ; Li, Min ; Han, De-Long ; Zhou, Ming-Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c132t-f434b6677f149253d67a7b3ccb054848eb962d58393a54ad1d436590d7af1bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Costs</topic><topic>Defect detection</topic><topic>Feature extraction</topic><topic>Global and local features</topic><topic>Head</topic><topic>Lightweight decoupling head</topic><topic>Maintenance</topic><topic>Multiscale feature fusion</topic><topic>Road surface defect detection</topic><topic>Roads</topic><topic>Semantics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Han, De-Long</creatorcontrib><creatorcontrib>Zhou, Ming-Le</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Gang</au><au>Zhang, Cheng</au><au>Li, Min</au><au>Han, De-Long</au><au>Zhou, Ming-Le</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LHA-Net: A Lightweight and High-accuracy Network for Road Surface Defect Detection</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2024</date><risdate>2024</risdate><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>Road surface defect detection can effectively reduce maintenance costs, which is a critical component in road structural health monitoring. However, existing methods often face challenges in the heavy computational parameters and high-accuracy detection, limiting their practical applicability in resource-constrained industrial settings. To alleviate this gap, we propose a Lightweight and High-accuracy Network (LHA-Net) for road surface defect detection, consisting of three sub-networks for feature extraction, feature fusion, and detection head. First, the proposed Direction-guided Global Feature-Aware Module (DGFM) and the proposed Heterokernel Local Feature-Aware Module (HLFM) are used in the feature extraction sub-net to extract global and local features while minimizing network parameters. Second, we propose an Asymptotically Weighted Aggregation Mechanism (AWAM) in the feature fusion sub-net, which efficiently merges detailed and semantic features through asymptotic multi-scale fusion and weighted fusion at multiple stages. Third, we propose a Lightweight Decoupling Head (LDH) in the detection head sub-net to extract target location and category information by emphasizing defect details in horizontal and vertical dimensions. Finally, to improve the generalizability, we propose the RDD-CC dataset extension of RDD2022 using road images collected by automobiles in China. Compared with the well-established lightweight YOLOv8n, LHA -Net achieves comparable or superior mAP@.5 scores with gains of +0.8%, +0.5%, and +0.3% on RDD-CC, RDD-SCM, and RDD-SCD datasets, respectively. Remarkably, LHA-Net does so with only 2.5M parameters (reduced by 16%) and 5.6 GFLOPs (reduced the computational load by 30%). The code and datasets are available at https://github.com/ZCZST01/LHA-Net .</abstract><pub>IEEE</pub><doi>10.1109/TIV.2024.3400035</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8858 |
ispartof | IEEE transactions on intelligent vehicles, 2024, p.1-15 |
issn | 2379-8858 2379-8904 |
language | eng |
recordid | cdi_ieee_primary_10529592 |
source | IEEE/IET Electronic Library |
subjects | Costs Defect detection Feature extraction Global and local features Head Lightweight decoupling head Maintenance Multiscale feature fusion Road surface defect detection Roads Semantics |
title | LHA-Net: A Lightweight and High-accuracy Network for Road Surface Defect Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A48%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LHA-Net:%20A%20Lightweight%20and%20High-accuracy%20Network%20for%20Road%20Surface%20Defect%20Detection&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Li,%20Gang&rft.date=2024&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2024.3400035&rft_dat=%3Ccrossref_RIE%3E10_1109_TIV_2024_3400035%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10529592&rfr_iscdi=true |