LHA-Net: A Lightweight and High-accuracy Network for Road Surface Defect Detection
Road surface defect detection can effectively reduce maintenance costs, which is a critical component in road structural health monitoring. However, existing methods often face challenges in the heavy computational parameters and high-accuracy detection, limiting their practical applicability in res...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent vehicles 2024, p.1-15 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Road surface defect detection can effectively reduce maintenance costs, which is a critical component in road structural health monitoring. However, existing methods often face challenges in the heavy computational parameters and high-accuracy detection, limiting their practical applicability in resource-constrained industrial settings. To alleviate this gap, we propose a Lightweight and High-accuracy Network (LHA-Net) for road surface defect detection, consisting of three sub-networks for feature extraction, feature fusion, and detection head. First, the proposed Direction-guided Global Feature-Aware Module (DGFM) and the proposed Heterokernel Local Feature-Aware Module (HLFM) are used in the feature extraction sub-net to extract global and local features while minimizing network parameters. Second, we propose an Asymptotically Weighted Aggregation Mechanism (AWAM) in the feature fusion sub-net, which efficiently merges detailed and semantic features through asymptotic multi-scale fusion and weighted fusion at multiple stages. Third, we propose a Lightweight Decoupling Head (LDH) in the detection head sub-net to extract target location and category information by emphasizing defect details in horizontal and vertical dimensions. Finally, to improve the generalizability, we propose the RDD-CC dataset extension of RDD2022 using road images collected by automobiles in China. Compared with the well-established lightweight YOLOv8n, LHA -Net achieves comparable or superior mAP@.5 scores with gains of +0.8%, +0.5%, and +0.3% on RDD-CC, RDD-SCM, and RDD-SCD datasets, respectively. Remarkably, LHA-Net does so with only 2.5M parameters (reduced by 16%) and 5.6 GFLOPs (reduced the computational load by 30%). The code and datasets are available at https://github.com/ZCZST01/LHA-Net . |
---|---|
ISSN: | 2379-8858 2379-8904 |
DOI: | 10.1109/TIV.2024.3400035 |