Empowering Traffic Steering in 6G Open RAN With Deep Reinforcement Learning

The sixth-generation (6G) wireless network landscape is evolving toward enhanced programmability, virtualization, and intelligence to support heterogeneous use cases. The O-RAN Alliance is pivotal in this transition, introducing a disaggregated architecture and open interfaces within the 6G network....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2024-10, Vol.23 (10), p.12782-12798
Hauptverfasser: Kavehmadavani, Fatemeh, Nguyen, Van-Dinh, Vu, Thang X., Chatzinotas, Symeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The sixth-generation (6G) wireless network landscape is evolving toward enhanced programmability, virtualization, and intelligence to support heterogeneous use cases. The O-RAN Alliance is pivotal in this transition, introducing a disaggregated architecture and open interfaces within the 6G network. Our paper explores an intelligent traffic steering (TS) scheme within the Open radio access network (RAN) architecture, aimed at improving overall system performance. Our novel TS algorithm efficiently manages diverse services, improving shared infrastructure performance amid unpredictable demand fluctuations. To address challenges like varying channel conditions, dynamic traffic demands, we propose a multi-layer optimization framework tailored to different timescales. Techniques such as long-short-term memory (LSTM), heuristics, and multi-agent deep reinforcement learning (MADRL) are employed within the non-real-time (non-RT) RAN intelligent controller (RIC). These techniques collaborate to make decisions on a larger timescale, defining custom control applications such as the intelligent TS-xAPP deployed at the near-real-time (near-RT) RIC. Meanwhile, optimization on a smaller timescale occurs at the RAN layer after receiving inferences/policies from RICs to address dynamic environments. The simulation results confirm the system's effectiveness in intelligently steering traffic through a slice-aware scheme, improving eMBB throughput by an average of 99.42% over slice isolation.
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2024.3396273