Cost-Effective Knowledge Extraction Framework for Low-Resource Environments
Extracting knowledge from texts is crucial for enriching everyday knowledge. Constructing a knowledge extraction environment requires comprehensive processes, such as data generation, data processing, and model and framework design. However, these processes require significant effort in low-resource...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024-01, Vol.12, p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extracting knowledge from texts is crucial for enriching everyday knowledge. Constructing a knowledge extraction environment requires comprehensive processes, such as data generation, data processing, and model and framework design. However, these processes require significant effort in low-resource environments where shared data are not published. Currently, there is no environment that can design an entire knowledge extraction framework and perform step-by-step experiments even with unlimited resources. Thus, this study proposes a method for building a cost-effective knowledge extraction environment. In particular, we present a low-cost, high-quality method for annotating a corpus for knowledge extraction, in which data sharing is unavailable. The dataset collected using this method improves the performance of knowledge-extraction system models. Specifically, the co-reference resolution and relation extraction performance were improved by 10% and 18.9%, respectively. Additionally, the entire knowledge extraction system was evaluated using sequential multitask learning, and the performance was improved by 5% as each trained model was introduced. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2024.3394906 |