Neural Architecture Search-Based Few-Shot Learning for Hyperspectral Image Classification

Few-shot learning (FSL) has achieved promising performance in hyperspectral image classification (HSIC) with few labeled samples by designing a proper embedding feature extractor. However, the performance of embedding feature extractors relies on the design of efficient deep convolutional neural net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-15
Hauptverfasser: Xiao, Fen, Xiang, Han, Cao, Chunhong, Gao, Xieping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Xiao, Fen
Xiang, Han
Cao, Chunhong
Gao, Xieping
description Few-shot learning (FSL) has achieved promising performance in hyperspectral image classification (HSIC) with few labeled samples by designing a proper embedding feature extractor. However, the performance of embedding feature extractors relies on the design of efficient deep convolutional neural network (CNN) architectures, which heavily depends on expertise knowledge. Particularly, FSL requires extracting discriminative features effectively across different domains, which makes the construction even more challenging. In this article, we propose a novel neural architecture search-based FSL model for HSI classification (HCFSL-NAS). Three novel strategies are proposed in this work. First, a neural architecture search (NAS)-based embedding feature extractor is developed to the FSL in HSIC, whose search space includes a group of proposed multiscale convolutions with channel attention. Second, a multisource learning framework is employed to aggregate abundant heterogeneous and homogeneous source data, which enables the powerful generalization of the network to the HSIC with only few labeled samples. Finally, the pointwise-based cross-entropy (CE) loss and the pairwise-based adaptive sparse loss are jointly optimized to maximize interclass distance and minimize the distance within a class simultaneously. Experimental results on four publicly hyperspectral datasets demonstrate that HCFSL-NAS outperforms both the exiting FSL methods and supervised learning methods for HSI classification with only few labeled samples. The code is available at https://github.com/xh-captain/HCFSL-NAS .
doi_str_mv 10.1109/TGRS.2024.3385478
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_10493163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10493163</ieee_id><sourcerecordid>3040055138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-e9ab0f3949530ddfa079ca4cec480681bf296c53fa6121e772e9d90b2583e1dc3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dl19ivZPdZiP6Ao2HrwFLab2TalTeJugvTfm9AePA3v8D4z8BDySGFEKeiX9exzNWLAxIhzJUWqrsiASqliSIS4JgOgOomZ0uyW3IWwB6BC0nRAvt-x9eYQjb3dFQ3apvUYrdB0MX41AfNoir_xalc10bLblkW5jVzlo_mpRh_qDujpxdFsMZocTAiFK6xpiqq8JzfOHAI-XOaQfE3f1pN5vPyYLSbjZWyZSJoYtdmA41poySHPnYFUWyMsWqEgUXTjmE6s5M4klFFMU4Y617BhUnGkueVD8ny-W_vqp8XQZPuq9WX3MuMgAKSkXHUtem5ZX4Xg0WW1L47GnzIKWW8w6w1mvcHsYrBjns5MgYj_-kJzmnD-Bx7RbSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040055138</pqid></control><display><type>article</type><title>Neural Architecture Search-Based Few-Shot Learning for Hyperspectral Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Fen ; Xiang, Han ; Cao, Chunhong ; Gao, Xieping</creator><creatorcontrib>Xiao, Fen ; Xiang, Han ; Cao, Chunhong ; Gao, Xieping</creatorcontrib><description>Few-shot learning (FSL) has achieved promising performance in hyperspectral image classification (HSIC) with few labeled samples by designing a proper embedding feature extractor. However, the performance of embedding feature extractors relies on the design of efficient deep convolutional neural network (CNN) architectures, which heavily depends on expertise knowledge. Particularly, FSL requires extracting discriminative features effectively across different domains, which makes the construction even more challenging. In this article, we propose a novel neural architecture search-based FSL model for HSI classification (HCFSL-NAS). Three novel strategies are proposed in this work. First, a neural architecture search (NAS)-based embedding feature extractor is developed to the FSL in HSIC, whose search space includes a group of proposed multiscale convolutions with channel attention. Second, a multisource learning framework is employed to aggregate abundant heterogeneous and homogeneous source data, which enables the powerful generalization of the network to the HSIC with only few labeled samples. Finally, the pointwise-based cross-entropy (CE) loss and the pairwise-based adaptive sparse loss are jointly optimized to maximize interclass distance and minimize the distance within a class simultaneously. Experimental results on four publicly hyperspectral datasets demonstrate that HCFSL-NAS outperforms both the exiting FSL methods and supervised learning methods for HSI classification with only few labeled samples. The code is available at https://github.com/xh-captain/HCFSL-NAS .</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3385478</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Artificial neural networks ; Classification ; Computer architecture ; Data mining ; Distance ; Embedding ; Feature extraction ; Few-shot learning (FSL) ; hyperspectral image (HSI) classification ; Hyperspectral imaging ; Image classification ; Learning ; Machine learning ; multisource learning ; neural architecture search (NAS) ; Neural networks ; Searching ; Supervised learning ; Taxonomy ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-e9ab0f3949530ddfa079ca4cec480681bf296c53fa6121e772e9d90b2583e1dc3</cites><orcidid>0000-0001-7511-9418 ; 0000-0002-3812-6536 ; 0000-0002-7764-3616 ; 0000-0002-3922-3696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10493163$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10493163$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Fen</creatorcontrib><creatorcontrib>Xiang, Han</creatorcontrib><creatorcontrib>Cao, Chunhong</creatorcontrib><creatorcontrib>Gao, Xieping</creatorcontrib><title>Neural Architecture Search-Based Few-Shot Learning for Hyperspectral Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Few-shot learning (FSL) has achieved promising performance in hyperspectral image classification (HSIC) with few labeled samples by designing a proper embedding feature extractor. However, the performance of embedding feature extractors relies on the design of efficient deep convolutional neural network (CNN) architectures, which heavily depends on expertise knowledge. Particularly, FSL requires extracting discriminative features effectively across different domains, which makes the construction even more challenging. In this article, we propose a novel neural architecture search-based FSL model for HSI classification (HCFSL-NAS). Three novel strategies are proposed in this work. First, a neural architecture search (NAS)-based embedding feature extractor is developed to the FSL in HSIC, whose search space includes a group of proposed multiscale convolutions with channel attention. Second, a multisource learning framework is employed to aggregate abundant heterogeneous and homogeneous source data, which enables the powerful generalization of the network to the HSIC with only few labeled samples. Finally, the pointwise-based cross-entropy (CE) loss and the pairwise-based adaptive sparse loss are jointly optimized to maximize interclass distance and minimize the distance within a class simultaneously. Experimental results on four publicly hyperspectral datasets demonstrate that HCFSL-NAS outperforms both the exiting FSL methods and supervised learning methods for HSI classification with only few labeled samples. The code is available at https://github.com/xh-captain/HCFSL-NAS .</description><subject>Adaptation models</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computer architecture</subject><subject>Data mining</subject><subject>Distance</subject><subject>Embedding</subject><subject>Feature extraction</subject><subject>Few-shot learning (FSL)</subject><subject>hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Learning</subject><subject>Machine learning</subject><subject>multisource learning</subject><subject>neural architecture search (NAS)</subject><subject>Neural networks</subject><subject>Searching</subject><subject>Supervised learning</subject><subject>Taxonomy</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOAh4Dl19ivZPdZiP6Ao2HrwFLab2TalTeJugvTfm9AePA3v8D4z8BDySGFEKeiX9exzNWLAxIhzJUWqrsiASqliSIS4JgOgOomZ0uyW3IWwB6BC0nRAvt-x9eYQjb3dFQ3apvUYrdB0MX41AfNoir_xalc10bLblkW5jVzlo_mpRh_qDujpxdFsMZocTAiFK6xpiqq8JzfOHAI-XOaQfE3f1pN5vPyYLSbjZWyZSJoYtdmA41poySHPnYFUWyMsWqEgUXTjmE6s5M4klFFMU4Y617BhUnGkueVD8ny-W_vqp8XQZPuq9WX3MuMgAKSkXHUtem5ZX4Xg0WW1L47GnzIKWW8w6w1mvcHsYrBjns5MgYj_-kJzmnD-Bx7RbSU</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Xiao, Fen</creator><creator>Xiang, Han</creator><creator>Cao, Chunhong</creator><creator>Gao, Xieping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7511-9418</orcidid><orcidid>https://orcid.org/0000-0002-3812-6536</orcidid><orcidid>https://orcid.org/0000-0002-7764-3616</orcidid><orcidid>https://orcid.org/0000-0002-3922-3696</orcidid></search><sort><creationdate>2024</creationdate><title>Neural Architecture Search-Based Few-Shot Learning for Hyperspectral Image Classification</title><author>Xiao, Fen ; Xiang, Han ; Cao, Chunhong ; Gao, Xieping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-e9ab0f3949530ddfa079ca4cec480681bf296c53fa6121e772e9d90b2583e1dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computer architecture</topic><topic>Data mining</topic><topic>Distance</topic><topic>Embedding</topic><topic>Feature extraction</topic><topic>Few-shot learning (FSL)</topic><topic>hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Learning</topic><topic>Machine learning</topic><topic>multisource learning</topic><topic>neural architecture search (NAS)</topic><topic>Neural networks</topic><topic>Searching</topic><topic>Supervised learning</topic><topic>Taxonomy</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Fen</creatorcontrib><creatorcontrib>Xiang, Han</creatorcontrib><creatorcontrib>Cao, Chunhong</creatorcontrib><creatorcontrib>Gao, Xieping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Fen</au><au>Xiang, Han</au><au>Cao, Chunhong</au><au>Gao, Xieping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Architecture Search-Based Few-Shot Learning for Hyperspectral Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Few-shot learning (FSL) has achieved promising performance in hyperspectral image classification (HSIC) with few labeled samples by designing a proper embedding feature extractor. However, the performance of embedding feature extractors relies on the design of efficient deep convolutional neural network (CNN) architectures, which heavily depends on expertise knowledge. Particularly, FSL requires extracting discriminative features effectively across different domains, which makes the construction even more challenging. In this article, we propose a novel neural architecture search-based FSL model for HSI classification (HCFSL-NAS). Three novel strategies are proposed in this work. First, a neural architecture search (NAS)-based embedding feature extractor is developed to the FSL in HSIC, whose search space includes a group of proposed multiscale convolutions with channel attention. Second, a multisource learning framework is employed to aggregate abundant heterogeneous and homogeneous source data, which enables the powerful generalization of the network to the HSIC with only few labeled samples. Finally, the pointwise-based cross-entropy (CE) loss and the pairwise-based adaptive sparse loss are jointly optimized to maximize interclass distance and minimize the distance within a class simultaneously. Experimental results on four publicly hyperspectral datasets demonstrate that HCFSL-NAS outperforms both the exiting FSL methods and supervised learning methods for HSI classification with only few labeled samples. The code is available at https://github.com/xh-captain/HCFSL-NAS .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3385478</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7511-9418</orcidid><orcidid>https://orcid.org/0000-0002-3812-6536</orcidid><orcidid>https://orcid.org/0000-0002-7764-3616</orcidid><orcidid>https://orcid.org/0000-0002-3922-3696</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-15
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10493163
source IEEE Electronic Library (IEL)
subjects Adaptation models
Artificial neural networks
Classification
Computer architecture
Data mining
Distance
Embedding
Feature extraction
Few-shot learning (FSL)
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Learning
Machine learning
multisource learning
neural architecture search (NAS)
Neural networks
Searching
Supervised learning
Taxonomy
Training
title Neural Architecture Search-Based Few-Shot Learning for Hyperspectral Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T16%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Architecture%20Search-Based%20Few-Shot%20Learning%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Xiao,%20Fen&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3385478&rft_dat=%3Cproquest_RIE%3E3040055138%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3040055138&rft_id=info:pmid/&rft_ieee_id=10493163&rfr_iscdi=true