Deep Hybrid Attention Framework for Road Crash Emergency Response Management

Road traffic crash is a global tragedy that leads to economic loss, injury, and fatalities. Understanding the severity of a road crash at the early stages is vital to timely providing emergency medical services to crash victims. This study developed a crash emergency response management framework th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-08, Vol.25 (8), p.8807-8818
1. Verfasser: Kashifi, Mohammad Tamim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Road traffic crash is a global tragedy that leads to economic loss, injury, and fatalities. Understanding the severity of a road crash at the early stages is vital to timely providing emergency medical services to crash victims. This study developed a crash emergency response management framework that requires basic crash information for emergency response decision-making. A Deep Hybrid Attention Network (DHAN) was proposed that captures temporal variations and spatial correlations for dynamic severity prediction. Further, two alternative model architectures that initially required only the approximate location or time of the crash were proposed and compared with the DHAN. The experiment was conducted on seven years French road crash dataset (2011-2017). The DHAN achieved an AUC of 0.820, an accuracy of 0.761, a recall of 0.803, and a false alarm rate of 0.258, outperforming baseline models.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2024.3376653