Parameter-Separable Prox-Lagrangian Method for Convex-Concave Saddle Point Problem

This letter considers the algorithm design and convergence analysis for the non-smooth convex-concave saddle point problem (CCSPP) with a bilinear coupling term. By using a prediction-correction structure and proximal regularizer, we develop a parameter-separable proximal Lagrangian method (Prox-LM)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2024, Vol.8, p.253-258
Hauptverfasser: Wu, Zhaolong, Zhao, Xiaowei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter considers the algorithm design and convergence analysis for the non-smooth convex-concave saddle point problem (CCSPP) with a bilinear coupling term. By using a prediction-correction structure and proximal regularizer, we develop a parameter-separable proximal Lagrangian method (Prox-LM) to tackle this problem. Specifically, we obtain a predicted solution from the minimax subproblems that are regularized by a proximal-point term, and then it is further modified in an inertial way to generate a new solution. One distinctive feature of our method is the decoupling of the algorithm parameters from the bilinear term, allowing for independent determination. We demonstrate that our proposed Prox-LM can achieve an \mathcal {O}(1/{k}) convergence rate towards the saddle point in an ergodic sense. Numerical experiments on the minimax games and the constrained multiagent problem have verified the effectiveness and performance of our method.
ISSN:2475-1456
2475-1456
DOI:10.1109/LCSYS.2024.3368008